New biological scaffold offers promising foundation for engineered tissues

February 24, 2014
New biological scaffold offers promising foundation for engineered tissues
Highly aligned nanofibers created by fibroblasts form a biological scaffold which could prove an ideal foundation for engineered tissues. Stem cells placed on the scaffold thrived, and it had the added advantage of provoking a very low immune response. Credit: Feng Zhao

Our cells don't live in a vacuum. They are surrounded by a complex, nurturing matrix that is essential for many biological functions, including growth and healing.

In all , including people, cells make their own . But in the lab, scientists attempting to grow tissue must provide a scaffold for cells to latch onto as they grow and proliferate. This engineered tissue has potential to repair or replace virtually any part of our bodies.

Typically, researchers construct scaffolds from synthetic materials or natural animal or human substances. All have their strengths and weaknesses, but no scaffolds grown in a Petri dish have been able to mimic the highly organized structure of the matrix made by living things, at least until now.

Feng Zhao of Michigan Technological University has persuaded fibroblasts, cells that makes the extracellular matrix, to make just such a well-organized scaffold. Its fibers are a mere 80 nanometers across, similar to fibers in a natural matrix. And, since her scaffold is made by cells, it is composed of the same intricate mix of all-natural proteins and sugars found in the body. Plus, its nanofibers are as highly aligned as freshly combed hair.

The trick was to orient the cells on a nano-grate that guided their growth—and the creation of the scaffold.

"The cells did the work," Zhao said. "The material they made is quite uniform, and of course it is completely biological."

Stem placed on her thrived, and it had the added advantage of provoking a very low immune response.

"We think this has great potential," she said. "I think we could use this to engineer softer tissues, like skin, blood vessels and muscle."

Explore further: Researchers develop hybrid scaffold, potential for future skin tissue engineering

More information: Advanced Functional Materials DOI: 10.1002/adfm.201303460/abstract

Related Stories

Toward fixing damaged hearts through tissue engineering

January 22, 2014

In the U.S., someone suffers a heart attack every 34 seconds—their heart is starved of oxygen and suffers irreparable damage. Engineering new heart tissue in the laboratory that could eventually be implanted into patients ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.