Researchers produce first ever atom-by-atom simulation of ALD nanoscale film growth

Feb 06, 2014
Researchers produce first ever atom-by-atom simulation of ALD nanoscale film growth
Mahdi Shirazi and Simon Elliot

Researchers at Tyndall National Institute, Ireland, have produced the first ever atom-by-atom simulation of nanoscale film growth by atomic layer deposition (ALD) – a thin-film technology used in the production of silicon chips.

Present in all electronic devices such as credit cards, mobile phones and computers, each chip is made up of multiple thin layers that provide different functions.  ALD has a key role to play in the manufacture of chips with ever thinner layers for the next generation of .  Growth simulations could help to improve the ALD process, but until now, were not accurate enough over experimental timescales. 

Similarly, while quantum mechanical simulations give an accurate atom-by-atom picture of individual ALD reactions at the tiniest scales, this is still far removed from what can be measured in the lab – until now.  The Tyndall group led by Dr Simon Elliott has for the first time combined the accuracy from the quantum mechanical level with the statistics needed to follow how thousands of atoms react millions of times a second, building up layers of material, as in the lab. 

Mahdi Shirazi, who will be awarded a PhD for this work, explains what set his research apart: "It was crucial to model the complete set of all ALD reactions, hundreds of them, at the quantum mechanical level and then carefully extract the information that was needed for the growth simulations." 

Thus, for the first time, we see the link between atom-by-atom chemical reactions and the growth of layers of materials.  This opens the way to new and improved ALD processing of materials for , but also for catalysts, solar cells and LED lighting.

The simulations were made possible through the computational power of the Irish Centre for High End Computing and the project was funded by Science Foundation Ireland through the FORME strategic research cluster.

Explore further: Nanoscale coatings improve stability and efficiency of devices for renewable fuel generation

add to favorites email to friend print save as pdf

Related Stories

Argonne in the marketplace: Microchannel plates with ALD

Nov 21, 2013

Think of an eight-inch square honeycomb structure made of glass whose pores are just a few tens of microns thick—the size of a single bacterium. In your mind's eye, you hold the beginnings of a breakthrough technology.

Adrenoleukodystrophy unravelled

Jul 30, 2012

The European X-ALD project undertook an initiative to understand the mechanisms responsible for the pathogenesis of adrenoleukodystrophy (ALD). The gene therapy approach for treating ALD developed during the ...

Supercomputer used to simulate 3,000-atom nano device

Jan 14, 2014

Fujitsu Laboratories announces that it has successfully simulated the electrical properties of a 3,000-atom nano device – a threefold increase over previous efforts – using a supercomputer. At the nanoscale ...

Recommended for you

For electronics beyond silicon, a new contender emerges

12 hours ago

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

14 hours ago

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

14 hours ago

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

Moving silicon atoms in graphene with atomic precision

Sep 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking ...

User comments : 0