Ancient settlements and modern cities follow same rules of development

Feb 12, 2014

Recently derived equations that describe development patterns in modern urban areas appear to work equally well to describe ancient cities settled thousands of years ago, according to a new study led by a researcher at the University of Colorado Boulder.

"This study suggests that there is a level at which every human society is actually very similar," said Scott Ortman, assistant professor of anthropology at CU-Boulder and lead author of the study published in the journal PLOS ONE. "This awareness helps break down the barriers between the past and present and allows us to view contemporary cities as lying on a continuum of all human settlements in time and place."

Over the last several years, Ortman's colleagues at the Santa Fe Institute (SFI), including Professor Luis Bettencourt, a co-author of the study, have developed mathematical models that describe how modern cities change as their populations grow. For example, scientists know that as a population increases, its settlement area becomes denser, while infrastructure needs per capita decrease and economic production per capita rises.

Ortman noticed that the variables used in these equations, such as cost of moving around, the size of the settled area, the population, and the benefits of people interacting, did not depend on any particular modern technology.

"I realized that if these models are adequate for explaining what's going on in contemporary cities, they should apply to any settlements in any society," he said. "So if these models are on the right track, they should apply to ancient societies too."

To test his idea, Ortman used data that had been collected in the 1960s about 1,500 settlements in central Mexico that spanned from 1,150 years B.C. through the Aztec period, which ended about 500 years ago. The data included the number of dwellings the archaeologists were able to identify, the total settled area and the density of pottery fragments scattered on the surface. Taken together, these artifacts give an indication of the total population numbers and settlement density of the ancient sites.

"We started analyzing the data in the ways we were thinking about with modern cities, and it showed that the models worked," Ortman said.

The discovery that ancient and modern settlements may develop in similar and predictable ways has implications both for archaeologists and people studying today's urban areas. For example, it's common for archaeologists to assume that population density is constant, no matter how large the settlement area, when estimating the population of ancient cities. The new equations could offer a way for archaeologists to get a more accurate head count, by incorporating the idea that population density tends to grow as total area increases.

In the future, the equations may also guide archaeologists in getting an idea of what they're likely to find within a given settlement based on its size, such as the miles of roads and pathways. The equations could also guide expectations about the number of different activities that took place in a settlement and the division of labor.

"There should be a relationship between the of settlements and the productivity of labor," Ortman said. "So, for example, we would expect larger social networks to be able to produce more public monuments per capita than smaller settlements."

The findings of the new study may also be useful to studies of modern societies. Because ancient settlements were typically less complex than today's cities, they offer a simple "model system" for testing the equations devised to explain modern cities.

"The archaeological record actually provides surprisingly clear tests of these models, and in some cases it's actually much harder to collect comparable data from contemporary cities," Ortman said.

Explore further: Do ancient cities hold the key to equal, sustainable urban access?

More information: Paper: dx.plos.org/10.1371/journal.pone.0087902

Related Stories

Separating Neandertal DNA from modern human contamination

Jan 27, 2014

Retrieval of ancient DNA molecules is usually performed with special precautions to prevent DNA from researchers or the environment to get mixed in with the DNA from the fossil. However, many ancient fossils have been lying ...

Recommended for you

Newlyweds, be careful what you wish for

2 minutes ago

A statistical analysis of the gift "fulfillments" at several hundred online wedding gift registries suggests that wedding guests are caught between a rock and a hard place when it comes to buying an appropriate gift for the ...

Can new understanding avert tragedy?

3 hours ago

As a boy growing up in Syracuse, NY, Sol Hsiang ran an experiment for a school project testing whether plants grow better sprinkled with water vs orange juice. Today, 20 years later, he applies complex statistical ...

Creative activities outside work can improve job performance

14 hours ago

Employees who pursue creative activities outside of work may find that these activities boost their performance on the job, according to a new study by San Francisco State University organizational psychologist Kevin Eschleman ...

User comments : 0

More news stories

Can new understanding avert tragedy?

As a boy growing up in Syracuse, NY, Sol Hsiang ran an experiment for a school project testing whether plants grow better sprinkled with water vs orange juice. Today, 20 years later, he applies complex statistical ...

Crowd-sourcing Britain's Bronze Age

A new joint project by the British Museum and the UCL Institute of Archaeology is seeking online contributions from members of the public to enhance a major British Bronze Age archive and artefact collection.

Roman dig 'transforms understanding' of ancient port

(Phys.org) —Researchers from the universities of Cambridge and Southampton have discovered a new section of the boundary wall of the ancient Roman port of Ostia, proving the city was much larger than previously ...

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Bionic ankle 'emulates nature'

These days, Hugh Herr, an associate professor of media arts and sciences at MIT, gets about 100 emails daily from people across the world interested in his bionic limbs.