Making aerogels the fast way

February 4, 2014
Making aerogels the fast way
Credit: Union College

One day, Union College's Aerogel Team's novel way of making "frozen smoke" could improve some of our favorite machines, including cars.

"When you hold it feels like nothing – like frozen smoke. It's about 95 to 97 percent air," said Ann Anderson, professor of mechanical engineering. "Nano-porous, solid and very low density, aerogel is made by removing solvents from a wet-gel. It's used for many purposes, like thermal insulation (on the Mars Rover), in windows or in extreme-weather clothing and sensors."

Together with Brad Bruno, associate professor of mechanical engineering, Mary Carroll, professor of chemistry and others, Anderson is studying the feasibility of commercializing their aerogel fabrication process. A time and money-saver, it could appeal to industries already using aerogel made in other ways.

During rapid supercritical extraction (RSCE), chemicals gel together (like Jell-O) in a hot press; the resulting wet-gel is dried by removing solvents (the wet part). The remaining aerogel (dried gel), is created in hours, rather than the days or weeks alternative methods take.

RSCE, Anderson said, is also approximately seven times cheaper, requiring one hour of labor for every 8 hours the other methods need.

A good place for such a process, and Union aerogel, is the automotive industry.

"Our 3-way catalytic aerogels promote chemical reactions that convert the three major pollutants in automotive exhaust – unburned hydrocarbons, nitrogen oxides and carbon monoxide – into less harmful water, nitrogen and carbon dioxide," Anderson said. "Because aerogels have very high surface areas and good thermal properties, we think they could replace precious metals, like platinum, used in current catalytic converters."

Indeed, the surface area of one 0.5-gram bit of aerogel equals 250 square meters.

"That's a lot of surface area for gases to come in contact with, facilitating very efficient pollution mitigation," Anderson said.

Explore further: U.S. team creates diamond aerogel in lab by emulating Mother Nature

Related Stories

Researchers produce ultra-light aerogel

March 25, 2013

A research team headed by Professor Gao Chao have developed ultra-light aerogel – it breaks the record of the world's lightest material with surprising flexibility and oil-absorption. This progress is published in the "Research ...

Recommended for you

Study visualizes proteins involved in cancer cell metabolism

May 26, 2016

Scientists using a technology called cryo-EM (cryo-electron microscopy) have broken through a technological barrier in visualizing proteins with an approach that may have an impact on drug discovery and development. They ...

Light can 'heal' defects in some solar cells

May 24, 2016

A family of compounds known as perovskites, which can be made into thin films with many promising electronic and optical properties, has been a hot research topic in recent years. But although these materials could potentially ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

DonGateley
not rated yet Feb 04, 2014
Can it be made so that it has high compliance? Thinking of vibrating a membrane sandwiched between two thin sheets of the material with the external sides stabilized.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.