Aerogel technology holds potential for oil and chemical clean-up

Feb 25, 2014 by Marianne Spoon
Aerogel technology holds potential for oil and chemical clean-up
Here the sponge-like aerogel soaks up only the red-dyed diesel fuel in a beaker of water.

Cleaning up oil spills and metal contaminates in a low-impact, sustainable and inexpensive manner remains a challenge for companies and governments globally.

But a group of researchers at UW–Madison is examining alternative, greener materials that can be modified to absorb oil and chemicals. If further developed, the technology may offer a cheaper and more to absorb oil and heavy metals from water and other surfaces.

Shaoqin "Sarah" Gong, a researcher at WID's BIONATES research group and associate professor of biomedical engineering, along with graduate student Qifeng Zheng and Zhiyong Cai, a project leader at the USDA Forest Products Laboratory in Madison, Wis., have recently created and patented the new aerogel technology.

Aerogels, which are highly porous materials and the lightest solids in existence, are already used in a variety of applications, ranging from insulation and aerospace materials to thickening agents in paints.

The aerogel prepared in Gong's lab is made of cellulose nanofibrils (sustainable wood-based materials) and an environmentally friendly polymer. Furthermore, these cellulose-based aerogels are made using an environmentally-friendly freeze-drying process without the use of organic solvents.

Aerogel technology holds potential for oil and chemical clean-up
Shaoquin Gong, Qifeng Zheng and Zhiyong Cai showcase their new aerogel technology.

It's the combination of this "greener" material and its high performance that got Gong's attention.

"For this material, one unique property is that it has superior absorbing ability for organic solvents—up to nearly 100 times its own weight," she says. "It also has strong absorbing ability for metal ions."

Treating the cellulose-based aerogel with specific types of silane after it is made through the freeze-drying process is a key step that gives the aerogel its water-repelling and oil-absorbing properties.

"So if you had an oil spill, for example, the idea is you could throw this aerogel sheet in the water and it would start to absorb the oil very quickly and efficiently," she says. "Once it's fully saturated, you can take it out and squeeze out all the . Although its absorbing capacity reduces after each use, it can be reused for a couple of cycles."

In addition, this cellulose-based aerogel exhibits excellent flexibility as demonstrated by compression mechanical testing.

Though much work needs to be done before the production of the aerogel can be mass-produced, Gong says she's eager to share the technology's potential benefits beyond the scientific community.

"We are living in a time where pollution is a serious problem—especially for human health and for animals in the ocean," she says. "We are passionate to develop technology to make a positive societal impact."

Explore further: New CMI process recycles magnets from factory floor

More information: "Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents." Qifeng Zheng, Zhiyong Cai, Shaoqin Gong. J. Mater. Chem. A, 2014,2, 3110-3118. DOI: 10.1039/C3TA14642A.

Related Stories

Making aerogels the fast way

Feb 04, 2014

One day, Union College's Aerogel Team's novel way of making "frozen smoke" could improve some of our favorite machines, including cars.

Researchers produce ultra-light aerogel

Mar 25, 2013

A research team headed by Professor Gao Chao have developed ultra-light aerogel – it breaks the record of the world's lightest material with surprising flexibility and oil-absorption. This progress is published ...

Recommended for you

New CMI process recycles magnets from factory floor

8 hours ago

A new recycling method developed by scientists at the Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, recovers valuable rare-earth magnetic material from ...

Chemists characterize 3-D macroporous hydrogels

12 hours ago

Carnegie Mellon University chemists have developed two novel methods to characterize 3-dimensional macroporous hydrogels—materials that hold great promise for developing "smart" responsive materials that ...

Substrates change nanoparticle reactivity

17 hours ago

(Phys.org)—Nanoscale materials tend to behave differently than their bulk counterparts. While there are many theories as to why this happens, technological advances in scanning tunneling microscopy (STM) ...

Reviving cottonseed meals adhesives potential

20 hours ago

Cottonseed meal—the leftovers after lint and oil are extracted from cottonseed—is typically fed to ruminant livestock, such as cows, or used as fertilizer. But Agricultural Research Service scientists ...

New concrete composite can heal itself

20 hours ago

In the human body, small wounds are easily treated by the body itself, requiring no further care. For bigger wounds to be healed, the body may need outside assistance. Concrete is like a living body, in that ...

Actuators that mimic ice plants

21 hours ago

Engineers developing moveable robot components may soon take advantage of a trick plants use. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam and Harvard University in Cambridge ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.