Advantages emerge in using nanostructured material when forging mechanical components

Feb 28, 2014

In his research conducted at the NUP/UPNA-Public University of Navarre, Salcedo focussed on the isothermal forge that uses temperatures higher than those of conventional forges. "Among the advantages observed," he points out in his conclusions, "we can point to better temperature control during the process, enhanced mechanical properties of the forged parts, and lower energy expenditure, because the preforms have to be heated to a lower temperature."

In the development of the research he also conducted a comparative study on the conventional forging process in order to obtain with a submicrometric and/or nanometric structure. "In each component produced the optimum forging conditions (temperature, heat treatments) were determined by analysing the microhardness and the microstructure," he explained.

His research made it possible to verify that the microhardness of forged mechanical components using predeformed material, "is much higher than in those produced from annealed material, and it was possible to achieve hardness increases of between 50% and 70% in the various mechanical components made, in contrast to the starting material in an annealed state." In this respect, there was also confirmation of an improvement in malleability and in the of the components produced in the cases in which isothermal forging was used rather than conventional forging.

Explore further: New research predicts when, how materials will act

add to favorites email to friend print save as pdf

Related Stories

Better protection for forging dies

Nov 21, 2012

Hard or tough - very often, the manufacturers of forging dies must make a compromise here. A new technology now makes it possible to combine both characteristics and clearly expand the useful life of forging ...

Innovative concept for knee cartilage treatment

Oct 09, 2013

Researchers have developed a material that can be used for the controlled release of a substance when subjected to cyclic mechanical loading. This work, carried out within the context of the National Research ...

Spotting the invisible cracks in wind turbines

Feb 12, 2013

(Phys.org)—A significant percentage of the costs of wind energy is due to wind turbine failures, as components are weakened under turbulent air flow conditions and need to be replaced. The challenge for the team was to ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.