Adding carbon gives iron-platinum nanocrystals the ideal optical properties for heat-assisted magnetic recording

Feb 12, 2014
Adding carbon gives iron–platinum nanocrystals the ideal optical properties for heat-assisted magnetic recording
The addition of carbon enhances the optical properties of iron–platinum nanocrystals and improves their performance in heat-assisted magnetic recording devices. Credit: camacho9999/iStock/Thinkstock

The disk drive in a computer works by using a magnetic field to change the physical properties of a tiny volume of a magnetically susceptible material. Current research aims to develop novel materials and technologies that can maximize storage capacity by focusing data into the smallest possible volume.

Now, Zhanhong Cen and co‐workers at the A*STAR Data Storage Institute in Singapore have experimentally and theoretically investigated the properties of iron–platinum (FePt) nanocrystals for use in ultrahigh-density magnetic recording media. They show that, as well as having the appropriate magnetic characteristics, the optical response of FePt is suitable for high-performance data-storage applications and that the use of pulses of laser light improves the magnetic recording process.

"Decreasing the size of magnetic particles makes the magnetic information become thermally unstable due to an effect called superparamagnetism," explains Cen. "FePt are very promising, because for these nanoparticles, superparamagnetism is suppressed at room temperature."

But FePt nanoparticles also have a drawback—the required for writing data is much higher than that produced by present disk drives. While the magnetic-field intensity necessary for a change of state could potentially be reduced by locally heating the material with a pulse of light—a process called heat-assisted magnetic recording, little was known about the optical response of FePt until now.

Cen and the team created thin-film samples using a process known as sputtering, which involves firing a beam of particles at a FePt alloy to release iron and platinum atoms. The atoms land on a glass substrate covered with a layer of magnesium oxide where they form crystals. The team sputtered carbon at the same time to form a single layer of FePt nanocrystals 15 nanometers in diameter and 9.1 nanometers tall embedded in a film of carbon.

For comparison, the team also created a nanocrystal sample without carbon and probed the refractive index and absorption of the two samples with both visible and near-infrared light. The researchers used these values in a computer model to simulate the performance of the material in a heat-assisted device. The sample doped with carbon came out on top.

"Our simulations show that introducing carbon into a FePt nanocomposite can improve optical performance," says Cen. "Ultimately, a FePt–carbon recording medium will perform better than current storage options, because it will use a smaller optical spot on the recording media and enable more energy-efficient writing and reading of data."

Explore further: Magnetic materials that change their properties when heated could pack more data onto hard drives

More information: Cen, Z. H., Xu, B. X., Hu, J. F., Li, J. M., Cher, K. M. et al. "Optical property study of FePt-C nanocomposite thin film for heat-assisted magnetic recording." Optics Express 21, 9906–9914 (2013) dx.doi.org/10.1364/OE.21.009906

add to favorites email to friend print save as pdf

Related Stories

Data storage: Measuring the downside of downsizing

Jul 31, 2013

To keep pace with the rapidly growing consumer demand for data storage, hardware engineers are striving to cram as much electronic information into as small a space as possible. Jinmin Zhao, Mingsheng Zhang ...

Recommended for you

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

Combs of light accelerate communication

Apr 14, 2014

Miniaturized optical frequency comb sources allow for transmission of data streams of several terabits per second over hundreds of kilometers – this has now been demonstrated by researchers of Karlsruhe ...

User comments : 0

More news stories

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

Sony's PlayStation 4 sales top seven million

Sony says it has sold seven million PlayStation 4 worldwide since its launch last year and admitted it can't make them fast enough, in a welcome change of fortune for the Japanese consumer electronics giant.