3D construction: Microparticles made of three chemically independent patches

February 21, 2014
Microparticles made of three chemically independent patches

(Phys.org) —Micromachines, nanorobots, multifunctional drug transporters, and matrices for tissue growth – these and many other applications would benefit from three-dimensional microstructures that present different (bio)chemical ligands that offer control over directionality. In the journal Angewandte Chemie, a team of German and American researchers has now reported the production of microparticles whose surface consists of three separate areas ("patches") that can be decorated with three different (bio)molecules.

"While the spatially controlled presentation of chemical and biological ligands is well established for two-dimensional substrates, very few methodologies exist for the spatially controlled decoration of three-dimensional objects, such as ," explains Jörg Lahann (University of Michigan, USA and Karlsruhe Institute of Technology). "Such structures would be very useful for many different applications, such as the controlled interaction of particles with biological cells for ." Organs are three-dimensional structures made of different types of cells. The growth of organs requires supports that stimulate the three-dimensionally controlled colonization of these cell types. Future technical applications, such as micromachines, will require 3D particles that can control the self-assembly of . If an area can also be made to respond to a stimulus by swelling or shrinking, for example, it would be possible to produce movable miniature components for use in sensors, robotic arms, or switchable drug transporters.

Lahann and his co-workers have now developed a method that allows them to obtain three chemically different patches on the same microparticle. The technique they used is electrohydrodynamic co-jetting, a process in which the researchers pump three different polymer solutions through parallel capillaries. An electric field accelerates the ejected liquid, which stretches it out. The solvent simultaneously evaporates, leaving behind a microfiber consisting of three chemically different compartments. By cutting the fibers, the team produces fine microparticles that are also made of three chemically different segments.

For their starting materials, the researchers chose three biodegradable polymers based on lactic acid. The three polymers were each equipped with a different chemical anchor group (known as "click functionality"). It was thus possible to attach different ligands, such as different biomolecules, to the anchor groups in an orthogonal fashion, meaning that the surface reactions to attach the ligands do not influence each other. By using biomolecules containing fluorescent markers, the scientists were able to demonstrate by using a microscope that three different patches were indeed present on the same microparticle. "For practical applications the particles need to be just a bit smaller – that is our next goal," says Lahann.

Explore further: Researchers create new microparticles that self-assemble like atoms into molecules

More information: Joerg Lahann. "Chemically Orthogonal Three-Patch Microparticles." Angewandte Chemie International Edition, dx.doi.org/10.1002/anie.201310727

Related Stories

Precise docking sites for cells

December 11, 2013

The Petri dish is a classical biological laboratory device, but it is no ideal living environment for many types of cells. Studies lose validity, as cell behavior on a flat plastic surface differs from that in branched lung ...

Patterns of particles generated by surface charges

February 4, 2014

Tuning the material structure at the nanoscale level can be really hard to achieve – but what if we had small particles, which assemble all by themselves, creating the required structure? At the Vienna University of Technology ...

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.