3D construction: Microparticles made of three chemically independent patches

Feb 21, 2014
Microparticles made of three chemically independent patches

(Phys.org) —Micromachines, nanorobots, multifunctional drug transporters, and matrices for tissue growth – these and many other applications would benefit from three-dimensional microstructures that present different (bio)chemical ligands that offer control over directionality. In the journal Angewandte Chemie, a team of German and American researchers has now reported the production of microparticles whose surface consists of three separate areas ("patches") that can be decorated with three different (bio)molecules.

"While the spatially controlled presentation of chemical and biological ligands is well established for two-dimensional substrates, very few methodologies exist for the spatially controlled decoration of three-dimensional objects, such as ," explains Jörg Lahann (University of Michigan, USA and Karlsruhe Institute of Technology). "Such structures would be very useful for many different applications, such as the controlled interaction of particles with biological cells for ." Organs are three-dimensional structures made of different types of cells. The growth of organs requires supports that stimulate the three-dimensionally controlled colonization of these cell types. Future technical applications, such as micromachines, will require 3D particles that can control the self-assembly of . If an area can also be made to respond to a stimulus by swelling or shrinking, for example, it would be possible to produce movable miniature components for use in sensors, robotic arms, or switchable drug transporters.

Lahann and his co-workers have now developed a method that allows them to obtain three chemically different patches on the same microparticle. The technique they used is electrohydrodynamic co-jetting, a process in which the researchers pump three different polymer solutions through parallel capillaries. An electric field accelerates the ejected liquid, which stretches it out. The solvent simultaneously evaporates, leaving behind a microfiber consisting of three chemically different compartments. By cutting the fibers, the team produces fine microparticles that are also made of three chemically different segments.

For their starting materials, the researchers chose three biodegradable polymers based on lactic acid. The three polymers were each equipped with a different chemical anchor group (known as "click functionality"). It was thus possible to attach different ligands, such as different biomolecules, to the anchor groups in an orthogonal fashion, meaning that the surface reactions to attach the ligands do not influence each other. By using biomolecules containing fluorescent markers, the scientists were able to demonstrate by using a microscope that three different patches were indeed present on the same microparticle. "For practical applications the particles need to be just a bit smaller – that is our next goal," says Lahann.

Explore further: Researchers use nanoscale 'patches' to sensitize targeted cell receptors

More information: Joerg Lahann. "Chemically Orthogonal Three-Patch Microparticles." Angewandte Chemie International Edition, dx.doi.org/10.1002/anie.201310727

add to favorites email to friend print save as pdf

Related Stories

Patterns of particles generated by surface charges

Feb 04, 2014

Tuning the material structure at the nanoscale level can be really hard to achieve – but what if we had small particles, which assemble all by themselves, creating the required structure? At the Vienna ...

Precise docking sites for cells

Dec 11, 2013

The Petri dish is a classical biological laboratory device, but it is no ideal living environment for many types of cells. Studies lose validity, as cell behavior on a flat plastic surface differs from that ...

Recommended for you

World's fastest manufacture of battery electrodes

47 minutes ago

New world record: Scientists at the Karlsruhe Institute of Technology (KIT) increased the manufacturing speed of electrode foils coated batch-wise by a factor of three – to 100 meters per minute. This was ...

Waste, an alternative source of energy to petroleum

48 minutes ago

The group led by Martín Olazar, researcher in the UPV/EHU-University of the Basque Country's Department of Chemical Engineering, is studying the development of sustainable refineries where it is possible ...

Researchers developing new thermal interface materials

1 hour ago

In the microelectronics world, the military and private sectors alike need solutions to technologic challenges. Dr. Mustafa Akbulut, assistant professor of chemical engineering, and two students lead a project ...

New insights on carbonic acid in water

16 hours ago

Though it garners few public headlines, carbonic acid, the hydrated form of carbon dioxide, is critical to both the health of the atmosphere and the human body. However, because it exists for only a fraction ...

User comments : 0