Study of zebrafish skin patterns shows cells chasing other cells around (w/ video)

Jan 21, 2014 by Bob Yirka report

(Phys.org) —A team of researchers at Osaka University in Japan has discovered that one type of zebrafish pigment cell chases another around in a Petri dish possibly explaining how they fish gets its stripes. The team has published its findings in Proceedings of the National Academy of Sciences.

Zebrafish, unsurprisingly, have striped bodies, reminiscent of zebras. But how does its biology decide to create the stripped patterns, and how does it make it come about? Research by the team in Japan, may be about to provide an answer.

Scientists have wondered about how animals get their stripes or spots for years. Are they hard-coded in DNA, the same way that an organism is able to produce an arm or leg, or is there some other mechanism at work? Oddly, Alan Turing, the famous math and computer visionary asked himself this very question back in the 1950's, and it turns out his theory may turn out to be closer than anyone expected. He came up with a that described the interactions between two molecules—one that causes a pattern to appear and one that attempts to stop it. In this new research, it's not molecules, but whole that appear to be doing something similar.

To find out what's going on with the zebrafish's stripes, the researchers placed a single yellow pigment cell (xanthophore) in a Petri dish and watched it wander around aimlessly. They did the same with a black pigment cell (melanophore) and found it behaved in much the same way. But when they placed both in a Petri dish, they discovered the yellow cell (using finger-like projections) actually chased the black cell around. They noted the black cells were able to move slightly faster, which meant there was a constant game of near catch and run.

This video is not supported by your browser at this time.
Credit: PNAS, doi/10.1073/pnas.1315416111

The researchers can't prove it, at least not yet, but they suspect the game of catch and run exhibited by the two cells is what results in the stripes seen on a whole fish. If there were hundreds, or thousands of such cells all playing catch and run with each other, they suggest, it's possible that the end result would be a corralling of the black cells, resulting in a shape that to us looks like long black stripes.

This video is not supported by your browser at this time.
Credit: PNAS, doi/10.1073/pnas.1315416111

This video is not supported by your browser at this time.
Credit: PNAS, doi/10.1073/pnas.1315416111

This video is not supported by your browser at this time.
Credit: PNAS, doi/10.1073/pnas.1315416111

Much more work will have to be done in this area, of course, but for now, it appears possible that some animals at least, get their coloring as the result of physical actions taken by cells, rather than genetic imprinting.

Explore further: Computer simulation explains why zebras have stripes

More information: "In vitro analysis suggests that difference in cell movement during direct interaction can generate various pigment patterns in vivo," by Hiroaki Yamanaka and Shigeru Kondo. www.pnas.org/cgi/doi/10.1073/pnas.1315416111

Related Stories

Computer simulation explains why zebras have stripes

Dec 18, 2013

(Phys.org) —Two researchers, one from the University of Queensland, the other the University of London have published a paper together in the journal Zoology in which they claim to have solved the riddle ...

Study shows how the zebrafish gets his stripe

Sep 25, 2007

Scientists have discovered how the zebrafish (Danio rerio) develops one of its four stripes. Their findings add to the growing list of tasks carried out by an important molecule that is involved in the arrangement of everything ...

How the zebra got its stripes

Feb 09, 2012

If there was a 'Just So' story for how the zebra got its stripes, I'm sure that Rudyard Kipling would have come up with an amusing and entertaining camouflage explanation. But would he have come up with the explanation that ...

Precise docking sites for cells

Dec 11, 2013

The Petri dish is a classical biological laboratory device, but it is no ideal living environment for many types of cells. Studies lose validity, as cell behavior on a flat plastic surface differs from that ...

Recommended for you

For resetting circadian rhythms, neural cooperation is key

9 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

10 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

For cells, internal stress leads to unique shapes

Apr 16, 2014

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

User comments : 0

More news stories

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...