X-ray diffraction technique 'maps' strain and crack propagation in metallic tubing

January 22, 2014
Image caption: This series of images show the x-ray maps of a crack along the surface of Alloy 500 tubing. In (a), the absorption map shows parts of the physical crack; (b) shows the grain orientations along the crack; (c) shows compressive stresses in blue as a result of the crack opening; (d) shows the crack's propagation path on the tubing via scanning electron micrograph, along with a "trench" created by ion beam for easier imaging of a crack cross section; (e) shows the crack opening. Credit: University of Western Ontario, London, ON, N6A 5B7, Canada

A team of researchers exploring the intergranular stress corrosion cracking of a type of metallic tubing used within nuclear power plants has developed a technique to both map and predict its propagation.

Metallic tubing plays a key role in transporting water coolant to steam generators within . But for reasons that remain elusive, in this application, Alloy 600, a high-strength nickel-based alloy widely used and considered robust in other high-performance situations, is susceptible to costly failure caused by intergranular stress corrosion cracking.

A team of researchers delved into this longstanding technical issue by using an x-ray diffraction technique to measure structural changes within microscopic areas on the metallic tubing, which they describe in a paper in Corrosion journal.

"Failures of Alloy 600 are preceded by mechanical strains, but the location of this type of strain is often a tiny area only a few microns wide, which has been mechanically damaged by a physical process like a micro scratch or a chemical process such as rapid local corrosion," explains Stewart McIntyre, co-author of the paper and an emeritus professor in the Department of Chemistry at the University of Western Ontario in London, Canada.

It's important to "identify the very tiny areas on samples that are under local tensile stresses—because these stresses can pull a material apart at the boundary between two metal grains," McIntyre says.

To zero in on these areas under local tensile stresses, McIntyre and colleagues turned to a very small and coherent x-ray beam of the sort produced in synchrotrons, such as the Advanced Light Source at Lawrence Berkeley National Laboratory.

"With such facilities we can 'map' the location of strains to determine whether their direction is likely to result in crack propagation in the future," says McIntyre.

Next up? The researchers plan to study the effects of external stresses of different magnitudes imposed on boiler tubing made from Alloy 600, as well as its new replacement, Alloy 690.

Explore further: Data miners dig for corrosion resistance

More information: The paper, "Mapping of Microscopic Strain Distributions in an Alloy 600 C-Ring After Application of Hoop Stresses and Stress Corrosion Cracking," written by N.S. McIntyre, J. Ulagnathan, T. Simpson, J. Qin, N. Sherry, M. Bauer, A.G. Carcea, R.C. Newman, M. Kunz, and N. Tamura, appears in NACE International's journal, Corrosion, Jan. 2014, Vol. 70, No. 1, pp. 66-73. See: dx.doi.org/10.5006/1006

Related Stories

Data miners dig for corrosion resistance

April 20, 2011

(PhysOrg.com) -- A better understanding of corrosion resistance may be possible using a data-mining tool, according to Penn State material scientists. This tool may also aid research in other areas where massive amounts of ...

Helping materials handle extreme stress

October 11, 2011

Important pressurized water nuclear reactor components are being made from a nickel-base alloy that contains twice the amount of chromium as the material previously used. The new alloy, called alloy 690, performs better, ...

Recommended for you

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

Light and matter merge in quantum coupling

August 22, 2016

Where light and matter intersect, the world illuminates. Where light and matter interact so strongly that they become one, they illuminate a world of new physics, according to Rice University scientists.

Measuring tiny forces with light

August 25, 2016

Photons are bizarre: They have no mass, but they do have momentum. And that allows researchers to do counterintuitive things with photons, such as using light to push matter around.

Stretchy supercapacitors power wearable electronics

August 23, 2016

A future of soft robots that wash your dishes or smart T-shirts that power your cell phone may depend on the development of stretchy power sources. But traditional batteries are thick and rigid—not ideal properties for ...

Spherical tokamak as model for next steps in fusion energy

August 24, 2016

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility—or "bottle"—that will provide the next steps in the development of fusion reactors. Leading candidates include spherical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.