Vibrations reveal state of bridge ropes

January 10, 2014
Vibrations reveal state of bridge ropes
Externally prestressed concrete bridges can be found all over Germany. Credit: S. Siegel/KIT

The new ResoBridge method has been developed to check bridges during running traffic within one day. It measures the vibrations of the tensioning ropes of externally prestressed concrete bridges. The test method developed by Karlsruhe Institute of Technology helps control the state of infrastructure facilities and optimizes early planning of necessary repairs. In the future, it may also be used to check cable-stayed bridges and constructions as well as hybrid towers of wind power plants.

Nearly 40,000 bridges exist in Germany. They have to withstand enormous loads. In particular, they have to cope with the growing heavy goods vehicle traffic. To guarantee safety of bridges, regular inspections are required. However, visual methods allow the damage to be detected in a rather advanced state only. Other methods, such as ultrasound, radiography or magnet-inductive testing, are time-consuming and expensive. Moreover, the bridges partly have to be closed for the traffic.

The ResoBridge method developed by Lothar Stempniewski and Steffen Siegel of the KIT Institute of Concrete Structures and Building Materials (IMB) represents an inexpensive and reliable alternative. The patented method is suited for with external tendons that are not cast into the concrete. These bridges are equipped with a hollow concrete box underneath the road. Six steel ropes inside the box ensure stability. Such externally prestressed concrete bridges can be found all over Germany.

The ResoBridge method is based on an acceleration sensor measuring natural vibrations of the tensioning ropes. The values measured are compared to results of earlier measurements. "A decreasing frequency indicates decreasing tension of the rope. Significant changes of the values suggest damage of the wires or braids," explains Steffen Siegel, IMB. The method measures the frequency spectra with an accuracy of up to 0.01 Hertz. To detect changes, an initial value has to be determined as a reference. The KIT researchers were involved in the development of an instrument that stores all values measured and indicates frequency changes.

Vibrations reveal state of bridge ropes
The tensioning ropes to be checked are located in the hollow concrete box of the bridge. Credit: S. Siegel/KIT

The instrument is easy to operate. Measurement of the values, inclusive of the assembly and disassembly of the sensor at the measurement point, takes a few minutes only. The check of a bridge will take one day without the bridge having to be closed for the traffic. Hence, ResoBridge saves time and costs. All data are recorded centrally. The method can also be used to compare various tensioning units and bridges. Presently, the method is being further developed for use on other constructions. Future application to cable-stayed bridges and constructions as well as to hybrid towers of is envisaged.

Explore further: Tracking down rust

Related Stories

Tracking down rust

April 5, 2010

( -- Damage to concrete bridges caused by rust can have fatal consequences, at worst leading to a total collapse. Now, researchers have developed an early-warning system for rust. Sensor-transponders integrated ...

Balsa bridges, with a twist

October 19, 2012

(—How much weight can a bridge made of balsa wood carry? When encased in a layer of fiber-reinforced resin, much more than you would expect, say engineers from EPFL. On October 12th, a composite bridge deck with ...

Engineers zap bridges with electricity to test for corrosion

December 11, 2013

( —Rust is a civil engineer's nightmare. Motorists in the United States make more than 200 million trips across bridges rated structurally deficient or in need of significant maintenance and yearly inspection. ...

Recommended for you

Xbox gaming technology may improve X-ray precision

December 1, 2015

With the aim of producing high-quality X-rays with minimal radiation exposure, particularly in children, researchers have developed a new approach to imaging patients. Surprisingly, the new technology isn't a high-tech, high-dollar ...

Making 3-D imaging 1,000 times better

December 1, 2015

MIT researchers have shown that by exploiting the polarization of light—the physical phenomenon behind polarized sunglasses and most 3-D movie systems—they can increase the resolution of conventional 3-D imaging devices ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.