Unraveling misfolded molecules using 'reprogrammed' yeast protein

Jan 16, 2014
Alpha-synuclein forms Lewy Body-like inclusions in the cytoplasm of yeast (left), but these are dissolved and alpha-synuclein returns to the plasma membrane upon expression of an engineered Hsp104 variant. Credit: James Shorter, Ph.D., Perelman School of Medicine, University of Pennsylvania; Cell

At the heart of brain diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease, and Parkinson's disease is protein misfolding, in which distorted proteins are unable to perform their normal functions. At present, there is no known way to reverse protein misfolding.

But James Shorter, Ph.D., associate professor of Biochemistry and Biophysics, at the Perelman School of Medicine, University of Pennsylvania, has found a possible way to unravel misfolded proteins by "reprogramming" Hsp104, a common yeast protein. The work was published this week in Cell.

Hsp104 is a "chaperone" protein, one that assists in the proper formation and functioning of other protein complexes. Although Hsp104 is one of the most common proteins on the planet, it has no analogue in humans or animals.

"We don't understand why animals have lost the gene for Hsp104, but at the same time, we've been wondering: 'Is there a therapeutic opportunity in this?'" asks Shorter. "Can we add it back as a disruptive technology to antagonize the that characterizes some diseases?"

In previous studies, Shorter's lab established that the natural version of Hsp104 is active against neurodegenerative proteins such as alpha-synuclein. "We expressed the wild-type protein in a rat model of Parkinson's disease and observed beneficial phenotypes," explains Shorter. "But the wild-type protein just doesn't work as well as we would like."

In the present study, the team screened large libraries of Hsp104 variants to find versions that could both maintain and break up misfolded clumps. "Luckily several variants came out of our screen that could suppress the toxicity associated with misfolded and clumped FUS, TDP-43, and alpha-synuclein disease proteins in yeast, while also enhancing proper protein function," he adds.

Shorter's team collaborated with the lab of Guy Caldwell at the University of Alabama to test Hsp104 variants in the worm C. elegans and found marked rescue of alpha-synuclein toxicity, the first time that engineered enzymes have been shown to suppress neurodegeneration in a multicellular animal.

"This is very exciting, as there are no agents that are known to rescue neurodegeneration and at the same time reverse protein misfolding," notes first author Meredith Jackrel, Ph.D., a postdoctoral fellow in the Shorter lab. "Certainly nobody's ever tried to reprogram an existing protein to try to accomplish that task."

Shorter identified Hsp104's coiled-coil middle domain as a major area affecting its ability to function as a chaperone, noting that minor mutations in this domain appear to have wide-ranging potential to unlock the molecule's protein clump-busting capabilities. He suggests that the middle domain of Hsp104 functions much like an electrical capacitor, storing the protein's beneficial possibilities. A seemingly small tweak of the middle-domain structure, as well as other parts of the molecule such as the pore loops, can unleash a surprising therapeutic power.

With that power now demonstrated in the relatively primitive worm species, the team's next step will be to move to a more complex animal model in mice, where the side effects of introducing a foreign protein into an organism might be a concern.

Shorter explains that aside from Hsp104's declumping function, "the other major goal from a bioengineering viewpoint is to make the tweaked Hsp104 specific in what it targets because all the variants we have at the moment seem to work across the board. That's not what you want for a therapeutic, because there might be off-target effects."

He stresses that although his reengineering approach is not yet a cure or practical treatment for neurodegenerative disease, it's a major first step toward that ultimate goal and shows that clump busting—what was previously thought impossible—is within reach, adding, "We've defined that it is possible to achieve clot-busting activity in a simple model system. The challenge is to move it forward from there."

Explore further: Blockade in cellular waste disposal: Scientists show how protein aggregates disrupt the molecular balance of the cell

Related Stories

Lessons from yeast: A possible cure for Parkinson's disease?

Aug 14, 2008

Parkinson disease (PD) is a debilitating and lethal neurodegenerative disease, for which there is currently no cure. It is caused by the progressive loss of nerve cells that produce the chemical dopamine and is characterized ...

New findings on protein misfolding

Sep 18, 2012

Misfolded proteins can cause various neurodegenerative diseases such as spinocerebellar ataxias (SCAs) or Huntington's disease, which are characterized by a progressive loss of neurons in the brain. Researchers of the Max ...

Recommended for you

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

Apr 18, 2014

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...