Unmanned flying drones to help identify oil reserves

Jan 15, 2014 by Euan Wemyss
University of Aberdeen academic using unmanned flying drones to help identify oil reserves.

(Phys.org) —Unmanned flying drones are being used to recover more of the oil reserves from the North Sea and beyond by studying geology from the sky.

Academics at the University of Aberdeen, in collaboration with a group at the University of Bergen in Norway, are using remotely operated flying machines to scan rock formations in remote areas in order to better understand what lies beneath the surface and improve understanding of subsurface reservoirs.

Professor John Howell, a Geoscientist at the University of Aberdeen explained: "When you drill a well in the North Sea, you can directly measure the rocks in the borehole, however you have much less certainty about what is going on away from the well. Given that two wells are often several miles apart, predicting what the rock layers in between the boreholes look like is a huge challenge.

"To solve this problem we look at similar rock units which occur in cliffs above sea level and we use the drone to make extremely detailed 3D models, which we can then adapt for the subsurface. This gives us a much better idea of what conditions are like between these two bore holes and then allows us to predict how the oil will follow and how much we can recover. The advantage of the drone is that it allows us to collect large volumes of data from otherwise inaccessible cliff sections in remote and often dangerous places."

Geological mapping has come a long may since the early days of the Victorian pioneers who spent years making painstakingly detailed geological maps by hand. In many areas data is still being collected using conventional photographs and hand-written notes.

The recent development of laser scanning systems, initially from the ground and later from helicopters using gyroscopic guidance systems borrowed from cruise missiles is revolutionizing mapping because it allows very large quantities of very accurate data to be collected quickly and efficiently.

Most recently the group are using (drones) to map cliff sections. The drones consist of computer gyroscopically stabilised body, typically with up to eight tiny motors with helicopter-style blades on 'spider legs' emitting from its centre. The vehicle used in the project costs around £10,000 and is remotely operated using radio controls and carries two cameras which allow it to collect stereo, 3D imagery. The computer stabilisation and multiple motors means it is incredibly stable and provide and accurate map of the rock formations.

Professor Howell added: "The work is part of a project called SAFARI which started in the late 1980s. The original workers on the project have seen data collection technology come on in leaps and bounds since then but the introduction of laser scanning was one of the biggest improvements. We're now able to create virtual rock formations that are accurate to within less than a few millimetres.

"The overall project's goal is to develop a fully searchable database of these relevant which will help oil companies build better models of the subsurface and improve recovery from oilfields."

Explore further: Geologists in Norway are using flying drones with cameras to hunt for oil

add to favorites email to friend print save as pdf

Related Stories

Mapping the demise of the dinosaurs

Dec 09, 2013

About 65 million years ago, an asteroid or comet crashed into a shallow sea near what is now the Yucatán Peninsula of Mexico. The resulting firestorm and global dust cloud caused the extinction of many land ...

A better way to pinpoint underground oil reserves

Jan 14, 2009

(PhysOrg.com) -- Picture this: an accurate map of a large underground oil reservoir that can guide engineers’ efforts to coax the oil from the vast rocky subsurface into wells where it can be pumped out for storage or transport.

Recommended for you

How productive are the ore factories in the deep sea?

3 hours ago

About ten years after the first moon landing, scientists on earth made a discovery that proved that our home planet still holds a lot of surprises in store for us. Looking through the portholes of the submersible ...

NASA image: Volcanoes in Guatemala

7 hours ago

This photo of volcanoes in Guatemala was taken from NASA's C-20A aircraft during a four-week Earth science radar imaging mission deployment over Central and South America. The conical volcano in the center ...

NASA sees last vestiges of Tropical Depression Jack

Apr 23, 2014

Tropical Cyclone Jack had weakened to a tropical depression when NASA and JAXA's Tropical Rainfall Measuring Mission (TRMM) satellite passed above on April 22, 2014 at 1120 UTC/7:20 a.m. EDT.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

wealthychef
not rated yet Jan 15, 2014
NO NO NO. Solar! We have enough oil. Forget it, stop it, we need to switch! Take a trip to Beijing and tell me we need more oil exploration.

More news stories

Untangling Brazil's controversial new forest code

Approved in 2012, Brazil's new Forest Code has few admirers. Agricultural interests argue that it threatens the livelihoods of farmers. Environmentalists counter that it imperils millions of hectares of forest, ...

How productive are the ore factories in the deep sea?

About ten years after the first moon landing, scientists on earth made a discovery that proved that our home planet still holds a lot of surprises in store for us. Looking through the portholes of the submersible ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...