Undergraduates discover rare eclipsing double asteroid

Jan 07, 2014
In this artist's rendering, the newly-identified binary asteroid 3905 Doppler approaches an eclipse as the larger asteroid begins to pass in front of the smaller one, as seen from a vantage point on Earth. Credit: Loretta Kuo

Students in a University of Maryland undergraduate astronomy class have made a rare discovery that wowed professional astronomers: a previously unstudied asteroid is actually a pair of asteroids that orbit and regularly eclipse one another.

Fewer than 100 asteroids of this type have been identified in the main asteroid belt between Mars and Jupiter, said Melissa Hayes-Gehrke, who teaches the hands-on class for non-astronomy majors in which eight students made the find in the fall semester 2013.

The students' discovery that 3905 Doppler is an eclipsing binary asteroid will be presented in a poster session Jan. 7 at the 223rd meeting of the American Astronomical Society in National Harbor, Maryland and published in April in the Minor Planet Bulletin.

"This is a fantastic discovery," said University of Maryland Astronomy Prof. Drake Deming, who was not involved with the class. "A binary asteroid with such an unusual lightcurve is pretty rare. It provides an unprecedented opportunity to learn about the physical properties and orbital evolution of these objects."

"Actually contributing to the scientific community and seeing established scientists getting legitimately excited about our findings is a very good feeling," said Terence Basile, a junior from Beltsville, MD majoring in cell biology.

One of hundreds of thousands of pieces of cosmic debris in our solar system's between Mars and Jupiter, 3905 Doppler was discovered in 1984, but over the coming decades it attracted scant attention. In September 2013 Hayes-Gehrke's students picked it and two other asteroids from an astronomy journal's list of asteroids worth observing because they were well positioned in the autumn sky and were scientific enigmas.

Student teams studying 3905 Doppler met over four nights in October 2013. Each four-person team observed and photographed the asteroid, using a privately owned telescope in Nerpio, Spain, which they accessed and controlled over the internet. Their main task was to photograph changes in the intensity of each asteroid's reflected light and turn those images into a lightcurve.

A lightcurve is a graph of a celestial object's brightness over time. Variations in brightness are often due to the object's shape, with spherical objects like planets yielding lightcurves that do not vary, and asymmetrical objects like asteroids producing peaks and valleys as the amount of reflected light varies. By measuring the time between maximum light intensities, planetologists can tell how fast an asteroid is rotating. Most asteroids complete a rotation in a few hours to a day.

"When we looked at the images we didn't realize we had anything special, because the brightness difference is not something you can see with your eyes," Hayes-Gehrke said. But when the two teams studying 3905 Doppler used a computer program to chart its lightcurve, they found the asteroid's light occasionally faded to nearly nothing.

"It was incredibly frustrating," said Alec Bartek, a senior physics major from Brookeville, MD. "For some reason our light curve didn't look right."

It was as though the rotating rock had suddenly gone dark – and Hayes-Gehrke suspected that's exactly what was happening. She thought 3905 Doppler was actually two asteroids orbiting one another. When one of the two asteroids blocked the telescope's view of its companion, the result was an asteroid eclipse – and a sharp dip in the light curve.

An amateur astronomer in Italy who was viewing 3905 Doppler at about the same time shared his data with the students. Observations by the Italian, Lorenzo Franco, confirmed the lightcurve came from a binary asteroid.

"Even then I was not fully aware of how special the discovery was," said sophomore economics major Brady Bent of Arbutus, MD. "I thought it just meant we would have to do more work. As we continued to analyze our data, other professors in the Astronomy Department came over to view our work. At this point I understood just how rare our find was."

The two asteroids are probably roughly potato-shaped and pocked with impact craters made by strikes from other space debris, Hayes-Gehrke said. The smaller one is about three-quarters the length of the larger one. They orbit each other end to end. Each orbit takes 51 hours – an unusually long time and one the student researchers can't explain. Now that the students have shown how unusual the asteroid is, it's likely that other astronomers will study it.

"Picking the was luck," Hayes-Gehrke said. So was the fact that the students' camera happened to record an eclipse. But then the students used the same problem-solving techniques a professional astronomer would use to explain an unexpected finding.

"That's the whole point of the class," Hayes-Gehrke said. "I'm hoping they'll keep in mind, when they read about scientific results, that it's not a cut-and-dried process, but the scientist probably had to go through some kind of struggle to get results."

Explore further: Spinning up a dust devil on Mars

More information: "Lightcurve analysis for asteroids 3905 Doppler, 983 Gunila and 5110 Belgirate" by Melissa Hayes-Gehrke, George Levantis, Alec Bartek, Emily Greenberg, Ken Koester, Seong Min Lee, Zach Wasli and Chris Wells-Weitzner will be presented between 9 am and 6:30 pm Jan. 7 at the American Astronomical Society's biannual meeting, the Gaylord National Resort and Conference Center, National Harbor, MD.

Related Stories

Asteroids' close encounters with Mars

Nov 19, 2013

For nearly as long as astronomers have been able to observe asteroids, a question has gone unanswered: Why do the surfaces of most asteroids appear redder than meteorites—the remnants of asteroids that ...

Earth-passing asteroid is 'an entirely new beast'

Jun 17, 2013

On the last day of May 2013 asteroid 1998 QE2 passed relatively closely by our planet, coming within 6 million kilometers… about 15 times the distance to the Moon. While there was never any chance of an ...

New horseshoe orbit Earth-companion asteroid discovered

Apr 06, 2011

(PhysOrg.com) -- Apostolos Christou and David Asher from the Armagh Observatory in Northern Ireland announced the discovery of an asteroid near Earth called Asteroid 2010 SO16 and their findings were published ...

Asteroid 2013 TV135: A reality check

Oct 18, 2013

(Phys.org) —Newly discovered asteroid 2013 TV135 made a close approach to Earth on Sept. 16, when it came within about 4.2 million miles (6.7 million kilometers). The asteroid is initially estimated to ...

Recommended for you

SDO captures images of two mid-level flares

1 hour ago

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

8 hours ago

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

10 hours ago

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

10 hours ago

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

11 hours ago

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.