Ultrathin platinum films become magnetic when subjected to an electric field

January 31, 2014
Figure 1: In the fabricated device, a voltage applied to the ‘gate’ electrode produces an electric field across the platinum film due to the redistribution of ions in the conductive liquid. Under an electric field, the normally non-magnetic platinum film displays magnetic properties. Credit: Sunao Shimizu, RIKEN Center for Emergent Matter Science

Only a few elements in the periodic table are inherently magnetic. Iron is perhaps the best known, but cobalt and nickel also exhibit this type of ferromagnetism. Scientists have recently discovered, however, that gold, silver, platinum, palladium and other transition metals demonstrate magnetic behavior when formed into nanometer-scale structures. Yoshihiro Iwasa, Sunao Shimizu and colleagues from the Emergent Device Research Team at the RIKEN Center for Emergent Matter Science have now shown that this nanoscale magnetism in thin films of platinum can be controlled using an externally applied electric field.

Platinum is nearly, but not quite, ferromagnetic like iron, suggesting that it might be possible to induce magnetic properties using external stimuli such as an . To test this possibility, Shimizu's team fabricated a simple device consisting of a thin film of just a few nanometers thick on an aluminum oxide substrate, and applied an external electric field to it using a conductive fluid (Fig. 1).

Shimizu and his colleagues observed that the platinum sheet's resistance dropped significantly when exposed to the external electric field, accompanied by a distinct and pronounced Hall voltage fluctuation. After detailed analysis, the team demonstrated that this voltage modulation was the result of a phenomenon known as the anomalous Hall effect.

The conventional Hall effect describes the formation of a measurable electric field known as the Hall voltage when electrons travelling in a magnetic field between two electrodes are deflected from their path, which leads to a build-up of electrical charge on one side of the device. The anomalous Hall effect refers to an additional Hall voltage that only arises in materials with . "This means that the initially non-magnetic thin film of platinum on the aluminum oxide substrate behaves like a magnetic material under the influence of an electric field," says Shimizu.

Scientists believe that the ability to electrically control magnetism will be crucial for developing future low-power magnetic memories. Magnetically encoded data is used in almost every computer system, but the use of magnetic fields to store and retrieve data consumes a great deal of power. Nanoscale, electrically controlled magnetism could one day enable electrical reading and writing of computer memories at a fraction of conventional energy consumption levels.

"This technique of applying an electric field through liquid is also transferable to other materials," says Shimizu. "Next, we would like to use it to search for other hidden properties."

Explore further: Reversal of magnetic moment by an electrical voltage in a single material could lead to new low-power electronic devices

More information: Shimizu, S., Takahashi, K. S., Hatano, T., Kawasaki, M., Tokura, Y. & Iwasa, Y. "Electrically tunable anomalous Hall effect in Pt thin films." Physical Review Letters 111, 216803 (2013). dx.doi.org/10.1103/PhysRevLett.111.216803

Related Stories

Magnetic switch gets closer to application

January 27, 2014

Scientists from Paris, Newcastle and Helmholtz-Zentrum Berlin have been able to switch on and off robust ferromagnetism close to room temperature by using low electric fields. Their results are inspiring for future applications ...

Recommended for you

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

Scientists bring order, and color, to microparticles

August 3, 2015

A team of New York University scientists has developed a technique that prompts microparticles to form ordered structures in a variety of materials. The advance, which appears in the Journal of the American Chemical Society ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.