Ultrathin platinum films become magnetic when subjected to an electric field

Jan 31, 2014
Figure 1: In the fabricated device, a voltage applied to the ‘gate’ electrode produces an electric field across the platinum film due to the redistribution of ions in the conductive liquid. Under an electric field, the normally non-magnetic platinum film displays magnetic properties. Credit: Sunao Shimizu, RIKEN Center for Emergent Matter Science

Only a few elements in the periodic table are inherently magnetic. Iron is perhaps the best known, but cobalt and nickel also exhibit this type of ferromagnetism. Scientists have recently discovered, however, that gold, silver, platinum, palladium and other transition metals demonstrate magnetic behavior when formed into nanometer-scale structures. Yoshihiro Iwasa, Sunao Shimizu and colleagues from the Emergent Device Research Team at the RIKEN Center for Emergent Matter Science have now shown that this nanoscale magnetism in thin films of platinum can be controlled using an externally applied electric field.

Platinum is nearly, but not quite, ferromagnetic like iron, suggesting that it might be possible to induce magnetic properties using external stimuli such as an . To test this possibility, Shimizu's team fabricated a simple device consisting of a thin film of just a few nanometers thick on an aluminum oxide substrate, and applied an external electric field to it using a conductive fluid (Fig. 1).

Shimizu and his colleagues observed that the platinum sheet's resistance dropped significantly when exposed to the external electric field, accompanied by a distinct and pronounced Hall voltage fluctuation. After detailed analysis, the team demonstrated that this voltage modulation was the result of a phenomenon known as the anomalous Hall effect.

The conventional Hall effect describes the formation of a measurable electric field known as the Hall voltage when electrons travelling in a magnetic field between two electrodes are deflected from their path, which leads to a build-up of electrical charge on one side of the device. The anomalous Hall effect refers to an additional Hall voltage that only arises in materials with . "This means that the initially non-magnetic thin film of platinum on the aluminum oxide substrate behaves like a magnetic material under the influence of an electric field," says Shimizu.

Scientists believe that the ability to electrically control magnetism will be crucial for developing future low-power magnetic memories. Magnetically encoded data is used in almost every computer system, but the use of magnetic fields to store and retrieve data consumes a great deal of power. Nanoscale, electrically controlled magnetism could one day enable electrical reading and writing of computer memories at a fraction of conventional energy consumption levels.

"This technique of applying an electric field through liquid is also transferable to other materials," says Shimizu. "Next, we would like to use it to search for other hidden properties."

Explore further: Magnetic switch gets closer to application

More information: Shimizu, S., Takahashi, K. S., Hatano, T., Kawasaki, M., Tokura, Y. & Iwasa, Y. "Electrically tunable anomalous Hall effect in Pt thin films." Physical Review Letters 111, 216803 (2013). dx.doi.org/10.1103/PhysRevLett.111.216803

Related Stories

Magnetic switch gets closer to application

Jan 27, 2014

Scientists from Paris, Newcastle and Helmholtz-Zentrum Berlin have been able to switch on and off robust ferromagnetism close to room temperature by using low electric fields. Their results are inspiring ...

Recommended for you

New approach to form non-equilibrium structures

11 hours ago

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

13 hours ago

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

Chemist develops X-ray vision for quality assurance

17 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

17 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

Jul 23, 2014

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

User comments : 0