The ultra-high volumetric energy density lithium-sulfur battery

Jan 23, 2014

Lithium ion battery technology (LIBs) is one of the most important mobile power sources for laptops, cameras, and smart phones. However, the current energy density of LIBs is approaching the theoretical limit, which underscoring the urgent need for new high energy density battery systems. Among the high-energy density storage systems, lithium-sulfur batteries, with energy density of 2600 Wh kg-1 (nearly 3~5 times than that of the traditional LIBs), holds the potential to serve as next generation of high energy battery. Sulfur possesses a very low electric conductivity of 5x10-30 S cm-1 at room temperature. Therefore, 30-70 wt. percent conductive materials, e.g. carbon nanotubes, graphene, porous carbon, and conductive polymers, have to be added into the electrode for high utilization of sulfur at current processing technology. The addition of nanocarbon materials with low stacking density neutralizes the high energy density, especially the volumetric energy density of lithium-sulfur batteries.

Researchers in Prof. Qiang Zhang's group from Tsinghua University in Beijing have developed a new strategy to increase the sulfur loading amount up to 90 wt percent in cathode materials based on an aligned CNT/S scaffold, which benefits the ultra-high volumetric of lithium-sulfur batteries. A volumetric capacity of 1116 mAh・cm-3 and volumetric energy density of 434 Wh・L-1 were achieved based on the volume of the total cell, including cathode, current collector, membrane, anode, which was far beyond the lithium thin-film battery. The team has published their findings in a recent issue of Nano Energy (2014, 4, 65-72).

"The design of sulfur cathode materials for lithium sulfur batteries with high volumetric energy density is crucial for practical applications," said Qiang. "We selected aligned CNTs as the ultra-light scaffold because they demonstrate hierarchical porous architecture, extremely high electrical conductivity, low density, as well as low cost." In fact, such kinds of aligned CNTs with a length of 20-200 μm have been mass produced in a fluidized bed reactor at a low cost of less than $100 per kg-1. "These aligned CNTs can be easily dispersed into polymer with an ultra-low conductive percolation threshold of 0.0025 wt percent. Obviously, they can also serve as a high-efficiency conducting scaffold for sulfur materials." Prof. Fei Wei adds, "We have found a scalable, room-temperature, one-step method for the fabrication of an aligned CNT/sulfur cathode. The composite cathode material possesses ultra-high sulfur content of 90 wt percent and a high density of 1.98 g cm-3, which is 2 to 4 times than that of the routine sulfur/carbon composite cathode. Therefore, the volumetric energy density of this research is far beyond the reported result."

As Prof. Zhang points out, this approach sheds some light on building with high volumetric energy density by using a high-density composite with high sulfur loading amount. Future work in the development of lithium sulfur batteries may focus on the strategy of relieving the shuttle effect and suppressing the lithium dendrites, and further improvement in gravimetric and volumetric energy density of lithium- electrochemical systems.

Explore further: Scientists build ion-selective membrane for ultra-stable lithium sulfur batteries

More information: Xin-Bing Cheng, Jia-Qi Huang, Qiang Zhang, Hong-Jie Peng, Meng-Qiang Zhao, Fei Wei, Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries, Nano Energy, Volume 4, March 2014, Pages 65-72, ISSN 2211-2855, dx.doi.org/10.1016/j.nanoen.2013.12.013.

Provided by Tsinghua University

4.4 /5 (22 votes)
add to favorites email to friend print save as pdf

Related Stories

Battery development may extend range of electric cars

Jan 09, 2014

It's known that electric vehicles could travel longer distances before needing to charge and more renewable energy could be saved for a rainy day if lithium-sulfur batteries can just overcome a few technical ...

A longer life for lithium-sulfur batteries

Apr 02, 2013

Electric cars have still got it tough in the German marketplace. They are too expensive and their range is too short. This is an opportune time for a breakthrough in efficient and low-cost lithium-sulfur ...

Designer glue improves lithium-ion battery life

Aug 20, 2013

(Phys.org) —When it comes to improving the performance of lithium-ion batteries, no part should be overlooked – not even the glue that binds materials together in the cathode, researchers at SLAC and ...

Recommended for you

A single molecule device for mobile phones

7 hours ago

Researchers from the Delft University of Technology, Groningen University and the FOM Foundation have designed a single molecule which can act as a useful building block in nanometer-size circuits. They found ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Eikka
5 / 5 (1) Jan 23, 2014
with energy density of 2600 Wh kg-1 (nearly 3~5 times than that of the traditional LIBs)


Are you absolutely sure about that? There is no traditional lithium battery on the market with an energy denstiy of 520 Wh/kg or 1/5th of the reported number. The best of the best are around 1/10th of that.

Or is the article talking about primary cells instead of rechargeable cells?

The editing here has become increasingly sloppy and confusing, with increasingly hyperbolic headlines to catch page- and adviews.