Ultra-flexible chip can be wrapped around a hair

Jan 07, 2014
Ultraflexible electronics can be achieved by dissolving a sacrificial polymer layer and releasing a thin polymer film from a host substrate. Credit: Salvatore et al

Scientists in Switzerland said Tuesday they can create electronic chips so flexible they can be wrapped around a human hair.

The technique entails building an on top of a sandwich of polyvinyl layers perched on a hard base.

The wafer is then placed in water, which dissolves two of the polyvinyl layers and causes the base to be released, sinking to the bottom of the lab dish.

What remains is a circuit embedded on a light, transparent non-soluble polymer film called parylene that is just one micrometre, or a millionth of a metre, thick.

The transistors continue to work even when wrapped around a , which is about 50 micrometres thick, according to the research published in the journal Nature Communications.

The ultra-bendable chip may have medical uses, and has already been tested on an artificial eye in the lab.

It was added to a to provide a monitor for glaucoma, in which pressure builds up dangerously in the eyeball, said the team.

The invention also has many other potential outlets, from flexible solar cells to wearable bio-sensors, they said.

Substrate wrapped around hairs. Credit: Salvatore et al

The electronics "can be transferred on any object, surface and on biological tissues like human skin and plant leaves," according to the study led by Giovanni Salvatore at the Swiss Federal Institute of Technology in Zurich (ETZ).

This video is not supported by your browser at this time.
Ultraflexible electronics can be achieved by dissolving a sacrificial polymer layer and releasing a thin polymer film from a host substrate. The electronics can be transferred onto any arbitrary surface such as plant leaves and human skin. The use of transparent materials enable the realization of transparent devices which can be transferred on to plastic contact lens and can be used to monitor intra-ocular pressure for glaucoma. Credit: Salvatore et al

The use of transparent materials enable the realization of transparent devices which can be transferred on to plastic contact lenses and can be used to monitor intra-ocular pressure for glaucoma. Credit: Salvatore et al


Explore further: Dubai plans to build 3-D printed office building

More information: Paper: dx.doi.org/10.1038/ncomms3982

Related Stories

Japan team develops micro-thin electric circuit

Jul 24, 2013

A flexible electrical circuit one-fifth the thickness of food wrap and weighing less than a feather could give doctors the chance to implant sensors inside the body, its Japanese developers say.

Checkerboard surface put to flexible electronics test

Dec 13, 2012

(Phys.org)—Interest mounts in stretchable electronics, seen as the future direction in mobile electronics. How long before manufacturing giants load retail shelves with devices that have stretchable electronics ...

Research brings unbreakable phones one step closer

Sep 16, 2013

Breakthrough research at RMIT University is advancing transparent bendable electronics, bringing science fiction gadgets – such as unbreakable rubber-like phones, rollable tablets and even functional clothing – closer ...

Recommended for you

Revealing faded frescos

12 hours ago

Many details of the wall and ceiling frescos in the cloister of Brandenburg Cathedral have faded: Plaster on which horses once "galloped" appears more or less bare. A hyperspectral camera sees images that remain hidden to ...

Device could detect driver drowsiness, make roads safer

14 hours ago

Drowsy driving injures and kills thousands of people in the United States each year. A device being developed by Vigo Technologies Inc., in collaboration with Wichita State University professor Jibo He and ...

New capability takes sensor fabrication to a new level

Jun 30, 2015

Operators must continually monitor conditions in power plants to assure they are operating safely and efficiently. Researchers on the Sensors and Controls Team at DOE's National Energy Technology Laboratory ...

Smart phones spot tired drivers

Jun 30, 2015

An electronic accelerometer of the kind found in most smart phones that let the device determine its orientation and respond to movement, could also be used to save lives on our roads, according to research ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.