New strategy emerges for fighting drug-resistant malaria

Jan 15, 2014
New strategy emerges for fighting drug-resistant malaria

Malaria is one of the most deadly infectious diseases in the world today, claiming the lives of over half a million people every year, and the recent emergence of parasites resistant to current treatments threatens to undermine efforts to control the disease. Researchers are now onto a new strategy to defeat drug-resistant strains of the parasite. Their report appears in the journal ACS Chemical Biology.

Christine Hrycyna, Rowena Martin, Jean Chmielewski and colleagues point out that the parasite Plasmodium falciparum, which causes the most severe form of malaria, is found in nearly 100 countries that, all totaled, are home to about half of the world's population. Every day, P. falciparum and its relatives hitch rides via mosquitoes to find a human home. An effective vaccine remains elusive and the continuing emergence of drug-resistant parasites is cause for alarm. The good news is that these scientists have designed compounds that work against P. falciparum strains that are resistant to drugs such as chloroquine. The team wanted to understand how these compounds worked and to develop new candidate antimalarials.

In the lab, the scientists designed and tested a set of molecules called quinine dimers, which were effective against sensitive parasites, and, surprisingly, even more effective against resistant ones. The compounds have an additional killing effect on the drug-resistant parasites because the bind to and block the resistance-conferring protein. This resensitizes the to chloroquine, and appears to block the normal function of the resistance protein, killing the parasite. "This highlights the potential for devising new antimalarial therapies that exploit inherent weaknesses in a key resistance mechanism of P. falciparum," they state.

Explore further: Researchers identify genetic marker of resistance to key malaria drug

More information: "Quinine Dimers are Potent Inhibitors of the Plasmodium falciparum Chloroquine Resistance Transporter and are Active against Quinoline-Resistant P. falciparum" ACS Chem. Biol., Article ASAP. DOI: 10.1021/cb4008953

add to favorites email to friend print save as pdf

Related Stories

Gene clues point to Cambodia for resistant malaria

Apr 28, 2013

Gene analysis of malaria parasites has pinpointed western Cambodia as the hotspot of strains that are dangerously resistant to artesiminin, the frontline drug against the disease, scientists said on Sunday.

Recommended for you

Nature inspires a greener way to make colorful plastics

7 hours ago

Long before humans figured out how to create colors, nature had already perfected the process—think stunning, bright butterfly wings of many different hues, for example. Now scientists are tapping into ...

New catalyst converts carbon dioxide to fuel

8 hours ago

Scientists from the University of Illinois at Chicago have synthesized a catalyst that improves their system for converting waste carbon dioxide into syngas, a precursor of gasoline and other energy-rich products, bringing ...

Bullet 'fingerprints' to help solve crimes

8 hours ago

Criminals don't just have to worry about their own fingerprints these days: because of a young forensic scientist at The University of Western Australia, they should also be very concerned about their bullets' ...

User comments : 0