Stem cells on the road to specialization

Jan 07, 2014

Scientists at the University of Copenhagen have gained new insight into how both early embryonic cells and embryonic stem cells are directed into becoming specialised cell types, like pancreatic and liver cells. The results have just been published in the scientific journal eLife.

This latest research from the Danish Stem Cell Center (Danstem) at the University of Copenhagen, helps identify how stem cells create so called pathways and roads supporting their own specialisation. This understanding is an important step towards stem cell-based cell therapies for conditions like diabetes and liver diseases.

"The new insight that we have gained into the impact of the on cell development is highly valuable," says Professor Joshua Brickman from DanStem, "It enables us to create the optimal physical environment in the laboratory for stem cells and to develop into specific, mature cells."

On the road

Developing cells constantly move and while moving around, they organise and build a physical environment very much like a small city with pathways and roads. The new research published in the scientific journal eLife shows two important things. Firstly the embryonic cells receive signals from other cells that actually instruct them in how to organise and build the road leading the cells towards early stages of pancreas and liver cells.

Professor Brickman and his team also found that they could isolate these roads from the developing and literally freeze them. The saved roads were then used in a separate experiment which showed that in the absence of an important cell signal, the road alone can be used to improve the cells' development and differentiation towards .

"Apart from gaining new important insight into cell development, our work also suggests that some of the current approaches to human specialisation towards both pancreatic and may not have been effective, because the important role of these roads, the so called extra-cellular matrix, was ignored," says Joshua Brickman.

Explore further: Biologists discover solution to problem limiting development of human stem cell therapies

More information: elife.elifesciences.org/lookup… /10.7554/elife.00806

add to favorites email to friend print save as pdf

Related Stories

Why stem cells need to stick with their friends

Nov 07, 2013

Scientists at University of Copenhagen and University of Edinburgh have identified a core set of functionally relevant factors which regulates embryonic stem cells' ability for self-renewal. A key aspect is the protein Oct4 ...

Stem cells develop best in 3-D

Nov 21, 2012

Scientists from The Danish Stem Cell Center (DanStem) at the University of Copenhagen are contributing important knowledge about how stem cells develop best into insulin-producing cells. In the long term this new knowledge ...

New discovery on early immune system development

Nov 12, 2013

Researchers at Lund University have shed light on how and when the immune system is formed, raising hope of better understanding various diseases in children, such as leukaemia.

Recommended for you

Japanese scientist resigns over stem cell scandal

15 hours ago

A researcher embroiled in a fabrication scandal that has rocked Japan's scientific establishment said Friday she would resign after failing to reproduce results of what was once billed as a ground-breaking study on ...

'Hairclip' protein mechanism explained

Dec 18, 2014

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.