Researchers discover how squid perceive distance

Jan 21, 2014
Researchers discover how squid perceive distance
The bigfin squid uses a characteristic bobbing motion to balance-out their visual impairment and precisely target prey.

(Phys.org) —Researchers at The University of Queensland have discovered how a species of squid perceives distance, providing an evolutionary solution to a problem divers regularly encounter in featureless waters.

Scientists from UQ's Queensland Brain Institute studied how Sepioteuthis lessoniana, more commonly known as the bigfin reef squid, overcome blurred vision due to a retinal bump caused by their brains pushing against their eyes.

PhD student Wen-Sung Chung discovered that the squid use a characteristic bobbing motion to balance-out their visual impairment and precisely target prey.

"This remarkable range-finding mechanism allows for hunting, defence, and object size identification in an environment where depth perception is otherwise very difficult," Mr Chung said.

"When Dory the blue surgeonfish first saw the whale in the movie Finding Nemo, she was confused by its distance in the featureless mid-water world of the open ocean.

"She assumed the whale was small and nearby, rather than huge and far away.

"This is exactly the problem that the unusual optics of squid eyes has solved," he said.

"The tools for distance judgment that animals use on land are of no use at any distance underwater, even in the clearest waters.

"This new proposed range-finding mechanism in squid could help Dory to resolve this," he said.

The soft body of the squid can be easily deformed during catching and handling, meaning observations of the distorted eye were previously overlooked.

To prove the retinal bumps were not the result of post-mortem damage from capture, non-invasive methods including a miniature high-resolution ultrasound scanner were applied to investigate an intact specimen.

Mr Chung also built a device for infra-red retinoscopy, to observe the eye shape of free-swimming squid.

It took a year to develop a subtle range-finding model in which image blur can be used for coding distance to guide squid to enter the strike zone where their tentacles can reach.

"This discovery is another case of 'matched filtering', where animals only need a simple cue to know when and where to strike, without complex neural computation," Mr Chung said.

This is particularly important for invertebrates, most of which do not have a big enough brain to deal with something complex.

Japanese researchers are using a similar concept to design a new form of robotic vision using a sweeping sensor, similar to the squid's head bobbing mechanism.

"After we made this discovery, we studied other species and found that six others – another squid and five types of cuttlefish – also show retinal bumps," Mr Chung said said.

The retinal bump has not been found in any deep sea squid studied so far, illustrating that the range of light conditions at different depths drives to develop different eye designs.

The results of the research, which was funded by the Australian Research Council and the Asian Office of Aerospace Research and Development, are published in the journal Current Biology on 21 January 2014.

Explore further: ROV video offers clues on how rare squid catches prey

More information: "Range-finding in squid using retinal deformation and image blur." Wen-Sung Chung, Justin Marshall. Current Biology - 20 January 2014 (Vol. 24, Issue 2, pp. R64-R65). DOI: 10.1016/j.cub.2013.11.058

Related Stories

ROV video offers clues on how rare squid catches prey

Aug 28, 2013

(Phys.org) —Video captured by a camera aboard a Remotely Operated Vehicle (ROV) off the coast of southern California is offering scientists clues to help explain how the rare squid Grimalditeuthis bonplandi, manage ...

Recommended for you

Male monkey filmed caring for dying mate (w/ Video)

Apr 18, 2014

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Orchid named after UC Riverside researcher

Apr 17, 2014

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

In sex-reversed cave insects, females have the penises

Apr 17, 2014

Researchers reporting in the Cell Press journal Current Biology on April 17 have discovered little-known cave insects with rather novel sex lives. The Brazilian insects, which represent four distinct but re ...

Fear of the cuckoo mafia

Apr 17, 2014

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Anda
not rated yet Jan 21, 2014
"This is particularly important for invertebrates, most of which do not have a big enough brain to deal with something complex." ???
Like the "stupid" Octopus?

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.