Enhanced sputtering yields from single-ion impacts on gold nanorods

January 6, 2014

Manufacturers of increasingly minute computer chips, transistors and other products will have to take special note of research findings at the University of Huddersfield. The implications are that a key process used to transform the properties of nanoscale materials can cause much greater damage than previously realised.

The University is home to the Electron Microscopy and Materials Analysis Research Group (EMMA), headed by Professor Stephen Donnelly. It has an advanced facility named MIAMI, which stands for Microscope and Ion Accelerators for Materials Investigation. It is used to bombard with and to examine the effects at the nanoscale.

During a recent experiment conducted by the team, including Research Fellow Dr Graeme Greaves, a number of gold nanorods – a thousand times smaller than a human hair – were irradiated with xenon atoms. They were a good subject for the experiment because nanowires or rods have a .

The findings were dramatic. "We were hoping to generate bubbles. We actually found that we were eroding the nanowires," said Dr Greaves.

And the rate of erosion – measured in terms of "sputtering yield", or how many atoms come out of matter for each incoming atom – was far in advance of expectations.

Researchers find that computer components can be damaged by key manufacturing processes

The sputtering yield of a normal piece of flat gold should be of the order of 50 atoms per ion," said Dr Greaves. "In the case of rods we expected it to be greater, because the geometry is much reduced. We worked out that it should be higher by a factor of four, or something of that order. But we actually found that the greatest value measured was a sputtering yield of a thousand – a factor of 20."

The results were so dramatic that the Huddersfield team sought confirmation. They asked Professor Kai Nordlund(pictured right) of the University of Helsinki to run a , creating a virtual gold nanorod. The Finns were able to replicate the Huddersfield findings.

Now the experiment is the subject of an article in the leading journal Physical Letters Review, of Dr Greaves is the lead author.

"The research has considerable implications, particularly for medicine," said Dr Greaves.

"More and more people are working on nanostructures for practical applications. Gold nanoparticles can be used for tumour detection, the optimisation of the bio-distribution of drugs to diseased organs and a radiotherapy dose enhancer.

"Components of computer chips are very small nowadays – in the order of 20 nanometres in size and getting smaller – and ion beams are used to change the properties of these materials. Our research shows you must be very wary of the amount of damage that may be done."

Explore further: Preparing a homogenous haystack

More information: Greaves, Graeme, Hinks, J. A., Busby, P., Mellors, N. J., Ilinov, A., Kuronen, A., Nordlund, K. and Donnelly, S. E. (2013) "Enhanced Sputtering Yields from Single-Ion Impacts on Gold Nanorods." Physical Review Letters, 111 (6). pp. 1-5. ISSN 0031-9007. prl.aps.org/abstract/PRL/v111/i6/e065504

Related Stories

Preparing a homogenous haystack

November 28, 2011

(PhysOrg.com) -- What if you could turn the whole haystack into needles? Instead of hunting for one item, you’d have 10 billion of the desired items laid out neatly in front of you. That’s what researchers at the ...

Quantum effects in nanowires at room temperature

August 28, 2013

Nano technologists at the University of Twente research institute MESA+ have, for the first time, demonstrated quantum effects in tiny nanowires of iridium atoms. These effects, which occur at room temperature, are responsible ...

Making silicon devices responsive to infrared light

January 6, 2014

Researchers have tried a variety of methods to develop detectors that are responsive to a broad range of infrared light—which could form imaging arrays for security systems, or solar cells that harness a broader range of ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.