SON ensures proper splicing of proteins to keep embryonic stem cells in a state of self-renewal

Jan 29, 2014
Regulating stem cell behavior
The protein SON is needed to ensure that the RNA transcripts of pluripotency-related genes are correctly spliced. Credit: I. Livyatan and E. Meshorer

Embryonic stem cells (ESCs) retain their ability to self-renew indefinitely thanks to a number of proteins known as pluripotency factors. These factors must be modified at the RNA level before they are turned into proteins in order to do their job properly.

An international team, including researchers from A*STAR, has now found that a protein called SON acts as a master regulator of RNA in these factors and is essential to keep human ESCs in their undifferentiated state.

"This is the first study to demonstrate the importance of splicing regulation in human ESCs," says Huck-Hui Ng, executive director of the A*STAR Genome Institute of Singapore.

Ng and his co-workers previously identified SON in a genome-wide screen designed to discover proteins needed for ESCs to maintain their 'stemness'— their ability to self-renew and differentiate into diverse cell types. Out of more than 20,000 genes tested, the gene encoding SON—a protein others had previously linked with splicing functions—ranked in the top ten of potential regulators of pluripotency. Ng's team, led by Xinyi Lu and Jonathan Göke, manipulated SON expression levels in human ESCs. In response to SON depletion, the cells underwent differentiation and cell death.

The researchers used RNA sequencing to better understand how SON helps to keep ESCs in a pluripotent state. In the absence of SON, they discovered that splicing patterns were altered in more than 1,000 different RNA transcripts, including many involved in maintaining ESC pluripotency and self-renewal.

Assays designed to reveal RNA-protein interactions showed that SON bound directly to the RNA transcripts of these pluripotency-related genes. Without SON, noncoding introns were often retained and protein-coding exons often skipped. This resulted in aberrant RNA transcripts that could not maintain the stem cell properties of the ESCs.

The researchers propose a model in which SON interacts with other factors in the spliceosome—the large and complex molecular machinery involved in RNA splicing—to ensure that RNA transcripts essential for ESC identity are packaged correctly (see image).

"This study should spark interest in the role of RNA processing in the maintenance of pluripotency," says Göke. One application is in the field of cellular reprogramming. For instance, to make embryonic-like stem cells from adult tissues, scientists could manipulate SON or other RNA-binding proteins to ensure proper splicing of pluripotency-associated genes. "It is imaginable," says Göke, "that regulation of RNA processing pathways can be tuned to improve the induction of pluripotency."

Explore further: Researchers describe structure of the largest protein complex in the respiratory chain

More information: Lu, X., Göke, J., Sachs, F., Jacques, P.-É., Liang, H. et al. SON connects the splicing-regulatory network with pluripotency in human embryonic stem cells. Nature Cell Biology 15, 1141–1152 (2013). dx.doi.org/10.1038/ncb2839

Chia, N.-Y., Chan, Y.-S., Feng, B., Lu, X., Orlov, Y. L. et al. A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature 468, 316–320 (2010). dx.doi.org/10.1038/nature09531

add to favorites email to friend print save as pdf

Related Stories

Study reveals how to better master stem cells' fate

Oct 24, 2013

(Phys.org) —USC scientist Qi-Long Ying and a team of researchers have long been searching for biotech's version of the fountain of youth—ways to encourage embryonic stem cells (ESCs) and epiblast stem ...

Recommended for you

Researchers identify new mechanism to aid cells under stress

Jan 26, 2015

A team of biologists from NYU and Harvard has identified new details in a cellular mechanism that serves as a defense against stress. The findings potentially offer insights into tumor progression and neurodegenerative diseases, ...

Researchers image and measure tubulin transport in cilia

Jan 26, 2015

Defective cilia can lead to a host of diseases and conditions in the human body—from rare, inherited bone malformations to blindness, male infertility, kidney disease and obesity. Scientists knew that somehow ...

Researchers find unusually elastic protein

Jan 26, 2015

Scientists at Heidelberg University have discovered an unusually elastic protein in one of the most ancient groups of animals, the over 600-million-year-old cnidarians. The protein is a part of the "weapons system" that the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.