Soil bacterium causes biofuel breakdown

January 13, 2014
Lignin, the tough woody polymer in the walls of plants, binds and protects cellulose that plants use for energy. Scientists at PNNL are part of a team that showed how a soil bacterium can degrade lignin, increasing its potential for use in biofuels.

( —Biofuels made from plant materials—also known as lignocellulosic biofuels—have promise as a source of sustainable alternative fuels thanks to soil bacterium known as Enterobacter lignolyticus SCF1. SCF1 degrades lignin and decomposes plant cell walls, allowing access to the cellulose sugars that plants use for energy. However, much remains to be learned about the processes and functions of SCF1 in breaking down lignin for use in biofuels.

But a study recently published by a team from the University of Massachusetts, the Joint BioEnergy Center, and Pacific Northwest National Laboratory reveals key insights about SCF1, including that it is the first soil bacterium to demonstrate the dual ability to degrade both as a and for breathing.

Lignocellulose is a renewable and abundant energy source in sufficient supply in the U.S. to make lignocellulosic biofuels sustainable and economically feasible. Furthermore, lignocellulose is not used for food, so it does not take food out of the supply chain. However, is one of the more difficult biomass materials to break down and transform for biofuel use. This work moves scientists one step farther toward that goal.

Using transcriptomics and proteomic techniques, the scientists observed increased growth of SCF1 grown on media amended with lignin compared to that grown on unamended media. They also observed that SCF1 degraded lignin in the absence of oxygen, improving the plant material's ability to produce biofuel.

Additionally, the multi-omics approach provided insights to lignin and its use as a terminal electron acceptor. This study also showed that SCF1 is able to degrade lignin both as food (assimilatory) and for breathing (dissimilatory)—the first to demonstrate this dual capability.

The researchers plan to grow SCF1 in the presence of bacterial communities adapted to switchgrass as the sole carbon source with and without poorly crystalline iron as an additional terminal electron acceptor. The plan is to do these experiments as a time course to test the hypothesis that iron supplements improved deconstruction of lignin through more or different enzymes.

Explore further: New research may improve the efficiency of the biofuel production cycle

More information: DeAngelis KM, D Sharma, R Varney, BA Simmons, NG Isern, LM Markillie, CD Nicora, AD Norbeck, RC Taylor, JT Aldrich, and EW Robinson. 2013. "Evidence Supporting Dissimilatory and Assimilatory Lignin Degradation in Enterobacter lignolyticus SCF1." Frontiers in Microbiology 4:280. DOI: 10.3389/fmicb.2013.00280

Related Stories

An enzyme to ease biofuel production

August 15, 2013

Limited availability of fossil fuels stimulates the search for different energy resources. The use of biofuels is one of the alternatives. Sugars derived from the grain of agricultural crops can be used to produce biofuel ...

Lignin-feasting microbe holds promise for biofuels

November 13, 2013

Nature designed lignin, the tough woody polymer in the walls of plant cells, to bind and protect the cellulose sugars that plants use for energy. For this reason, lignin is a major challenge for those who would extract those ...

New, simple technique may drive down biofuel production costs

January 7, 2014

Researchers at North Carolina State University have developed a simple, effective and relatively inexpensive technique for removing lignin from the plant material used to make biofuels, which may drive down the cost of biofuel ...

Recommended for you

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.