Soap bubbles for predicting cyclone intensity?

January 8, 2014
Close-up of a vortex in a soap bubble. Credit: Hamid Kellay

Could soap bubbles be used to predict the strength of hurricanes and typhoons? However unexpected it may sound, this question prompted physicists at the Laboratoire Ondes et Matière d'Aquitaine (CNRS, France) to perform a highly novel experiment: They used soap bubbles to model atmospheric flow. A detailed study of the rotation rates of the bubble vortices enabled the scientists to obtain a relationship that accurately describes the evolution of their intensity, and propose a simple model to predict that of tropical cyclones. The work, carried out in collaboration with researchers from the Institut de Mathématiques de Bordeaux and a team from Université de la Réunion, has just been published in the journal Scientific Reports.

Predicting wind intensity or strength in , typhoons and hurricanes is a key objective in meteorology: the lives of hundreds of thousands of people may depend on it. However, despite recent progress, such forecasts remain difficult since they involve many factors related to the complexity of these giant vortices and their interaction with the environment. A new research avenue has now been opened up by physicists at the Laboratoire Ondes et Matière d'Aquitaine (CNRS/Université Bordeaux 1), who have performed a highly novel experiment using, of all things, soap bubbles. The researchers carried out simulations of flow on , reproducing the curvature of the atmosphere and approximating as closely as possible a simple model of . The experiment allowed them to obtain vortices that resemble tropical cyclones and whose rotation rate and intensity exhibit astonishing dynamics-weak initially or just after the birth of the vortex, and increasing significantly over time. Following this intensification phase, the vortex attains its maximum intensity before entering a phase of decline.

Close-up of a vortex in a soap bubble. Credit: Hamid Kellay

A detailed study of the rotation rate of the vortices enabled the researchers to obtain a simple relationship that accurately describes the evolution of their intensity. For instance, the relationship can be used to determine the maximum intensity of the vortex and the time it takes to reach it, on the basis of its initial evolution. This prediction can begin around fifty hours after the formation of the vortex, a period corresponding to approximately one quarter of its lifetime and during which wind speeds intensify. The team then set out to verify that these results could be applied to real tropical cyclones. By applying the same analysis to approximately 150 tropical cyclones in the Pacific and Atlantic oceans, they showed that the relationship held true for such low-pressure systems. This study therefore provides a simple model that could help meteorologists to better predict the strength of tropical cyclones in the future.

Explore further: Hurricanes could increase over western Europe as climate warms

More information: "Intensity of vortices: from soap bubbles to Hurricanes." T. Meuel, Y. L. Xiong, P. Fischer, C. H. Bruneau, M. Bessafi & H. Kellay, Nature Scientific Reports, Article number: 3455 DOI: 10.1038/srep03455 , 13 December 2013

Related Stories

How Earth's rotation affects vortices in nature

October 15, 2013

What do smoke rings, tornadoes and the Great Red Spot of Jupiter have in common? They are all examples of vortices, regions within a fluid (liquid, gas or plasma) where the flow spins around an imaginary straight or curved ...

UN: Besides Haiyan, 2013 storm season near average

November 13, 2013

Apart from Typhoon Haiyan, which has devastated the Philippines, it's been an average year for tropical cyclones, the U.N. weather agency said Wednesday in its annual climate report.

Recommended for you

New study sheds light on end of Snowball Earth period

August 24, 2015

The second ice age during the Cryogenian period was not followed by the sudden and chaotic melting-back of the ice as previously thought, but ended with regular advances and retreats of the ice, according to research published ...

Earth's mineralogy unique in the cosmos

August 26, 2015

New research from a team led by Carnegie's Robert Hazen predicts that Earth has more than 1,500 undiscovered minerals and that the exact mineral diversity of our planet is unique and could not be duplicated anywhere in the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.