Soap bubbles for predicting cyclone intensity?

Jan 08, 2014
Close-up of a vortex in a soap bubble. Credit: Hamid Kellay

Could soap bubbles be used to predict the strength of hurricanes and typhoons? However unexpected it may sound, this question prompted physicists at the Laboratoire Ondes et Matière d'Aquitaine (CNRS, France) to perform a highly novel experiment: They used soap bubbles to model atmospheric flow. A detailed study of the rotation rates of the bubble vortices enabled the scientists to obtain a relationship that accurately describes the evolution of their intensity, and propose a simple model to predict that of tropical cyclones. The work, carried out in collaboration with researchers from the Institut de Mathématiques de Bordeaux and a team from Université de la Réunion, has just been published in the journal Scientific Reports.

Predicting wind intensity or strength in , typhoons and hurricanes is a key objective in meteorology: the lives of hundreds of thousands of people may depend on it. However, despite recent progress, such forecasts remain difficult since they involve many factors related to the complexity of these giant vortices and their interaction with the environment. A new research avenue has now been opened up by physicists at the Laboratoire Ondes et Matière d'Aquitaine (CNRS/Université Bordeaux 1), who have performed a highly novel experiment using, of all things, soap bubbles. The researchers carried out simulations of flow on , reproducing the curvature of the atmosphere and approximating as closely as possible a simple model of . The experiment allowed them to obtain vortices that resemble tropical cyclones and whose rotation rate and intensity exhibit astonishing dynamics-weak initially or just after the birth of the vortex, and increasing significantly over time. Following this intensification phase, the vortex attains its maximum intensity before entering a phase of decline.

Close-up of a vortex in a soap bubble. Credit: Hamid Kellay

A detailed study of the rotation rate of the vortices enabled the researchers to obtain a simple relationship that accurately describes the evolution of their intensity. For instance, the relationship can be used to determine the maximum intensity of the vortex and the time it takes to reach it, on the basis of its initial evolution. This prediction can begin around fifty hours after the formation of the vortex, a period corresponding to approximately one quarter of its lifetime and during which wind speeds intensify. The team then set out to verify that these results could be applied to real tropical cyclones. By applying the same analysis to approximately 150 tropical cyclones in the Pacific and Atlantic oceans, they showed that the relationship held true for such low-pressure systems. This study therefore provides a simple model that could help meteorologists to better predict the strength of tropical cyclones in the future.

Explore further: New NASA animations show massive rainfall totals from 2013 Philippine Tropical Cyclones

More information: "Intensity of vortices: from soap bubbles to Hurricanes." T. Meuel, Y. L. Xiong, P. Fischer, C. H. Bruneau, M. Bessafi & H. Kellay, Nature Scientific Reports, Article number: 3455 DOI: 10.1038/srep03455 , 13 December 2013

add to favorites email to friend print save as pdf

Related Stories

How Earth's rotation affects vortices in nature

Oct 15, 2013

What do smoke rings, tornadoes and the Great Red Spot of Jupiter have in common? They are all examples of vortices, regions within a fluid (liquid, gas or plasma) where the flow spins around an imaginary straight or curved ...

Recommended for you

Biology trumps chemistry in open ocean

3 hours ago

Single-cell phytoplankton in the ocean are responsible for roughly half of global oxygen production, despite vast tracts of the open ocean that are devoid of life-sustaining nutrients. While phytoplankton's ...

Underwater robot sheds new light on Antarctic sea ice

8 hours ago

The first detailed, high-resolution 3-D maps of Antarctic sea ice have been developed using an underwater robot. Scientists from the UK, USA and Australia say the new technology provides accurate ice thickness ...

Damage caused by geothermal probes is rare

10 hours ago

Soil settlements or upheavals and resulting cracks in monuments, floodings, or dried-up wells: Reports about damage caused by geothermal probes have made the population feel insecure. In fact, the probability ...

Extreme shrimp may hold clues to alien life

12 hours ago

(Phys.org) —At one of the world's deepest undersea hydrothermal vents, tiny shrimp are piled on top of each other, layer upon layer, crawling on rock chimneys that spew hot water. Bacteria, inside the shrimps' ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.