The snowball effect of overfishing

Jan 07, 2014

Florida State University researchers have spearheaded a major review of fisheries research that examines the domino effect that occurs when too many fish are harvested from one habitat.

The loss of a major species from an ecosystem can have unintended consequences because of the connections between that species and others in the system. Moreover, these changes often occur rapidly and unexpectedly, and are difficult to reverse.

"You don't realize how interdependent species are until it all unravels," said Felicia Coleman, director of the Florida State University Coastal and Marine Laboratory and a co-author on the study.

Coleman and her co-authors, led by FSU biology professor Joe Travis, examined case studies of several distressed ecosystems that had been thoroughly changed over the years because of overfishing.

For example, in the Northern Benguela ecosystem off Namibia, stocks of sardine and anchovy collapsed in the 1970s from overfishing and were replaced by bearded goby and jellyfish. But the bearded goby and jellyfish are far less energy-rich than a sardine or anchovy, which meant that their populations were not an adequate food source for other sea animals in the region such as penguins, gannets and hake, which had fed on the sardines and anchovies. African penguins and Cape gannets have declined by 77 percent and 94 percent respectively. Cape hake and deep-water hake production plummeted from 725,000 metric tons in 1972, to 110,000 metric tons in 1990. And the population of Cape fur seals has fluctuated dramatically.

"When you put all these examples together, you realize there really is something important going on in the world's ecosystems," Travis said. "It's easy to write off one case study. But, when you string them all together as this paper does, I think you come away with a compelling case that tipping points are real, we've crossed them in many ecosystems, and we'll cross more of them unless we can get this problem under control."

The full study appears in the Dec. 23 issue of Proceedings of the National Academy of Sciences.

Travis and Coleman and their colleagues are hoping that their research will accelerate changes in how fisheries scientists approach these ecosystem problems and how fisheries managers integrate system issues into their efforts. They hope that more effort will be devoted to understanding the key linkages among species that set up tipping points in ecosystems and that managers look for data that can show when a system might be approaching its tipping point.

"It's a lot easier to back up to avoid a tipping point before you get to it than it is to find a way to return once you've crossed it" said Travis.

Fishing experts do generally understand how affects other and the ecosystem as a whole, but it "needs to be a bigger part of the conversation and turned into action," Coleman said.

Explore further: Shark's unique trek could help save the species

Related Stories

Study highlights snowball effect of overfishing

Dec 24, 2013

Florida State University researchers have spearheaded a major review of fisheries data that examines the domino effect that occurs when too many fish are harvested from one habitat.

Boom in jellyfish: Overfishing called into question

May 06, 2013

Will we soon be forced to eat jellyfish? Since the beginning of the 2000s, these gelatinous creatures have invaded many of the world's seas, like the Japan Sea, the Black Sea, the Mediterranean Sea, etc. ...

Recommended for you

Shark's unique trek could help save the species

7 hours ago

Her name is Jiffy Lube2, a relatively small shortfin mako shark that, like others of her kind, swims long distances every day in search of prey and comfortable water temperatures.

Cuban, US scientists bond over big sharks

Jul 03, 2015

Somewhere in the North Atlantic right now, a longfin mako shark—a cousin of the storied great white—is cruising around, oblivious to the yellow satellite tag on its dorsal fin.

Research shows 'mulch fungus' causes turfgrass disease

Jul 02, 2015

Inadvertently continuing a line of study they conducted about 15 years ago, a team of Penn State researchers recently discovered the causal agent for an emerging turfgrass disease affecting golf courses around ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.