Sniffed out: The 'gas detectors' of the plant world

Jan 23, 2014

The elusive trigger that allows plants to 'see' the gas nitric oxide (NO), an important signalling molecule, has been tracked down by scientists at The University of Nottingham. It is the first time that a central mechanism for the detection of NO in plants has been identified.

Led by Professor Michael Holdsworth in the School of Biosciences, a team of experts, including researchers from UK and EU Universities and government research institutes, have found the 'master regulators' that control the detection of NO by and that regulate many important aspects of plant growth and response to environmental stress.

Their research "Nitric oxide sensing in plants is mediated by proteolytic control of GroupVII ERF transcription factors" is published on Thursday January 23 2014 in the academic journal Molecular Cell.

Plants fine-tune their growth and survival in response to various signals, including internal hormones and external factors such as light or temperature. Nitric oxide gas is one such signal.

Professor Holdsworth said: "In plants, NO regulates many different processes throughout the plant's lifetime from seeds to flowering and responses to the environment. Although the effect of NO on plants has been known for many years, a general mechanism for the initial sensing of this important molecule has remained elusive. We have identified a small number of key proteins, called transcription factors, which act as 'master sensors' to control NO responses throughout the plant life cycle."

A specific structure at the beginning of these proteins means that they are rapidly degraded in the presence of NO. However, when NO is absent they become stable, resulting in changed growth and development. This mechanism allows plants to sense the NO signal and alter its growth accordingly.

Interestingly, these proteins had previously been shown to control the plant response to low oxygen stress, which occurs when plants are flooded. Therefore they appear to act as central "gas detectors", providing plants with an inbuilt mechanism for sensing and responding to different gas signals.

Due to the importance of both NO and oxygen in plant development and stress responses, these proteins represent promising targets in the development of crops that have improved agricultural traits, particularly in relation to climate change.

The work was carried out by Professor Holdsworth and his team in the School of Biosciences in collaboration with researchers at the Universities of Sheffield, Warwick, Vienna, Rothamsted Research in the United Kingdom and CSIC-IBMCP in Valencia, Spain.

Explore further: New discovery could stimulate plant growth and increase crop yields, researchers say

Related Stories

Team discovers how plants avoid sunburn

Aug 06, 2013

A Dartmouth-led team has discovered a group of stress-related proteins that explains how plants avoid sunburn in intense light, a finding that one day could help biotechnologists to develop crops that can better cope with ...

Talking plants… science fiction?

Jan 21, 2014

Science is becoming closer emulating the fiction of the Avatar movie, by deciphering plants' electrical signals to devise new holistic environmental biosensors.

Nitric oxide regulates plants as well as people

Apr 28, 2008

Nitric oxide has emerged as an important signaling molecule in plants - as in mammals including people. In studies of a tropical medicinal herb as a model plant, researchers have found that nitric oxide targets a number of ...

Recommended for you

Team advances genome editing technique

14 hours ago

Customized genome editing – the ability to edit desired DNA sequences to add, delete, activate or suppress specific genes – has major potential for application in medicine, biotechnology, food and agriculture.

Studies steadily advance cellulosic ethanol prospects

Oct 20, 2014

At the Agricultural Research Service's Bioenergy Research Unit in Peoria, Illinois, field work and bench investigations keep ARS scientists on the scientific front lines of converting biomass into cellulosic ...

User comments : 0