New, simple technique may drive down biofuel production costs

January 7, 2014 by Matt Shipman
The new process dissolves lignin into low-cost protic ionic liquids, leaving cellulose behind as a solid. Credit: Ezinne Achivinu, North Carolina State University

Researchers at North Carolina State University have developed a simple, effective and relatively inexpensive technique for removing lignin from the plant material used to make biofuels, which may drive down the cost of biofuel production.

Lignin, nature's way of protecting , is difficult to break down or remove from plant materials called "biomass," such as the non-edible parts of the corn plant. However, that lignin needs to be extracted in order to reach the energy-rich cellulose that is used to make biofuels.

"Finding inexpensive ways to remove lignin is one of the largest barriers to producing cost-effective biofuels," says Ezinne Achinivu, a Ph.D. student in chemical and biomolecular engineering at NC State and lead author of a study describing the new technique. "And our approach is very promising."

The researchers began by making a number of liquid salts called "protic ionic liquids" or PILs. These PILs are fairly inexpensive to prepare, because they are made by mixing together an acid, such as acetic acid (more commonly known as vinegar), and a base (a chemical class of materials called amines). As part of the pretreatment process, one of the PILs is mixed with biomass and then heated and stirred. The lignin dissolves into the PIL, leaving the cellulose behind as a solid. The cellulose, which is now much easier to process, is then easily filtered from the mixture for use in the next biofuel production steps.

The remaining PIL-lignin liquid mixture can then be heated to distill (or vaporize) the PIL, leaving the lignin behind as a black powder. The vapors from the PIL are collected and cooled to recover the liquid PIL so that it can be re-used. The lignin is also valuable, because it can be used to manufacture polymers or other chemical products which could supplement the cost of running the facility.

"This PIL-based technique can be easily scaled up and is likely to be both more energy efficient and less expensive than existing biomass pretreatment techniques for removing lignin," Achinivu says.

The researchers are currently working to apply the technique to wood and other biomass feedstock materials, as well as to better understand and fine-tune the interactions between the PILs and lignin. "If we can better understand how the PIL dissolves the lignin, we can make the process even more efficient by using less energy while extracting more ," Achinivu says.

Explore further: New technique improves efficiency of biofuel production

More information: The paper, "Lignin Extraction from Biomass with Protic Ionic Liquids," is published online in the journal Green Chemistry: pubs.rsc.org/en/Content/ArticleLanding/2013/GC/C3GC42306A#!divAbstract

Abstract
A highly effective method has been developed for the simple extraction of lignin from lignocellulosic biomass using an inexpensive protic ionic liquid (PIL). After the lignin-extraction step, the PIL is easily recovered using simple distillation leaving the separated lignin and cellulose-rich residues available for further processing. Biopolymer solubility tests indicate that increasing the xylan (i.e., hemicellulose) solubility in the PIL results in greater fiber disruption/penetration, which significantly enhances the effectiveness of the lignin extraction.

Related Stories

New technique improves efficiency of biofuel production

June 30, 2010

Researchers at North Carolina State University have developed a more efficient technique for producing biofuels from woody plants that significantly reduces the waste that results from conventional biofuel production techniques. ...

An enzyme to ease biofuel production

August 15, 2013

Limited availability of fossil fuels stimulates the search for different energy resources. The use of biofuels is one of the alternatives. Sugars derived from the grain of agricultural crops can be used to produce biofuel ...

Lignin-feasting microbe holds promise for biofuels

November 13, 2013

Nature designed lignin, the tough woody polymer in the walls of plant cells, to bind and protect the cellulose sugars that plants use for energy. For this reason, lignin is a major challenge for those who would extract those ...

Recommended for you

Orangutan females prefer dominant, cheek-padded males

September 1, 2015

Unlike most mammals, mature male orangutans exhibit different facial characteristics: some develop large "cheek pads" on their faces; other males do not. A team of researchers studied the difference in reproductive success ...

Plastic in 99 percent of seabirds by 2050

August 31, 2015

Researchers from CSIRO and Imperial College London have assessed how widespread the threat of plastic is for the world's seabirds, including albatrosses, shearwaters and penguins, and found the majority of seabird species ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.