Plant scientists unravel a molecular switch to stimulate leaf growth

Jan 24, 2014

Cell division is essential for growth and development of all multicellular organisms. In plants, leaf growth consists of two different phases. A first phase is characterized by intense cell division, which leads to the formation of many new cells. During the second phase, cell division activity declines, the cells elongate and acquire a certain expertise. In a small leaf that just initiated from the stem, almost all cells are in the active division phase. Later on, when the leaf matures, cells at the top of the leaf switch to the specialization phase. The more time cells stay in the first phase, the more cells are being formed and the bigger the ultimate leaf size will be. It was already known that the protein ANGUSTIFOLIA3 (AN3) fulfils an important role in determining the timing and activity of cell division in the leaf. However, the precise mode of action of AN3 was not yet understood.

State-of-the-art techniques

To unravel a biological process on a molecular level, scientists typically develop plants in which genes are switched on or off. Studying the effect of these "aberrant" situations on plant growth can in some cases resolve the function of these genes. However, this approach often is like finding a needle in a haystack. Plant scientists of VIB and Ghent University therefore used various state-of-the-art techniques to study the effect of the "aberrant" molecular situation on all genes and all proteins at once. As such, the researchers could elucidate the function of AN3 in the model plant Arabidopsis.

Unpacking DNA to switch on gene activity

All cells of a particular plant contain the same genetic information, which is stored in their DNA. DNA is packed in a condensed structure, the chromatin. When certain genes need to be activated, the chromatin will be unpacked to make specific DNA regions accessible. This process is mediated by so-called "" complexes. An international team of scientists led by Dirk Inzé of VIB and Ghent University demonstrated that AN3 functions as part of a chromatin remodeling complex. More precisely, AN3 recruits the chromatin remodeling complex towards specific DNA regions that harbor cell division genes. As long as AN3 is active and keeps recruiting the chromatin remodeling complex, retain their division activity, resulting in plant organs with increased size. The AN3 protein complex regulates the length of the cell division phase in the and hence the transition from towards cell specialization.

Explore further: Why plants usually live longer then animals

More information: Liesbeth Vercruyssen et al. "ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development." The Plant Cell online 17 januari 2014 DOI: 10.1105/tpc 113.115907

add to favorites email to friend print save as pdf

Related Stories

Why plants usually live longer then animals

Oct 24, 2013

Stem cells are crucial for the continuous generation of new cells. Although the importance of stem cells in fuelling plant growth and development still many questions on their tight molecular control remain unanswered. Plant ...

What makes cell division accurate?

Jan 23, 2014

As all school-children learn, cells divide using a process called mitosis, which consists of a number of phases during which duplicate copies of the cell's DNA-containing chromosomes are pulled apart and ...

Important discovery for the diagnosis of genetic diseases

Jan 16, 2014

A study conducted by Marie Kmita's team at the IRCM, in collaboration with Josée Dostie at McGill University, shows the importance of the chromatin architecture in controlling the activity of genes, especially those required ...

How cells remodel after UV radiation

Dec 19, 2013

Researchers at the University of California, San Diego School of Medicine, with colleagues in The Netherlands and United Kingdom, have produced the first map detailing the network of genetic interactions underlying the cellular ...

Recommended for you

Crowdsourced power to solve microbe mysteries

18 hours ago

University of New South Wales scientists hope to unlock the secrets of millions of marine microbes from waters as far apart as Sydney's Botany Bay and the Amazon River in Brazil, with the help of an international ...

Reading a biological clock in the dark

Oct 21, 2014

Our species' waking and sleeping cycles – shaped in millions of years of evolution – have been turned upside down within a single century with the advent of electric lighting and airplanes. As a result, ...

User comments : 0