Scientists discover clue in the case of the missing silver

Jan 03, 2014 by Shannon Palus
Scientists discover clue in the case of the missing silver
The bright white triangle is where researchers spotted silver fission products congregating in a TRISO fuel particle. Credit: Idaho National Laboratory

Some come to Idaho to travel the highways that lead to the Tetons, to Yellowstone, to small towns and big adventures. Idaho National Laboratory researcher Isabella van Rooyen came, all the way from South Africa, looking for a piece of silver 500,000 times smaller than a poppy seed.

The silver was somewhere inside irradiated tristructural-isotopic (TRISO) fuel particles—a safer, more efficient, next-generation nuclear fuel—the "poppy seed" in question. Break a TRISO fuel particle open and it looks like a jaw breaker on the inside. An outer shell of carbon coats a layer of , which coats the uranium center where the energy-releasing fission happens. These layers are meant to contain the radioactive products of fission, which includes little bits of silver. Containment of the radioactive material is built right into the fuel itself.

But it doesn't always work perfectly. Occasionally, in just one or two out of 100 particles, silver escapes the center. It moves around the particle, and potentially gets out. Since the 1970s, scientists have been wondering exactly how this happens.

"I find it absolutely fascinating," said Van Rooyen. She has been studying the TRISO-silver problem since 2006. "I have a natural tendency to know what is going on [inside the fuel]."

And it does take a sixth science-minded sense: The silver seems to jump the silicon carbide layer as though by magic. There is no obvious point of exit, or forcible silver-shaped hole, to be found. The transport mechanism that brings it from the inside out is a mystery that spans decades. It is a wrinkle in the plan to make TRISO the most efficient, and potentially the safest, fuel of the future.

In South Africa, Van Rooyen worked on a number of hypotheses for the TRISO problem. For example, did it piggyback out of the TRISO fuel particle attached to another element? Were there almost-too-tiny-to-see nanotubes forming in the silicon carbide layer?

One possibility seemed most probable to Van Rooyen. But to test it, to even begin to see if it was correct, she needed to be able to get a closer look. And she needed irradiated TRISO fuel.

Roads less traveled

Scientists discover clue in the case of the missing silver
This cross-section of a TRISO fuel pellet shows TRISO fuel particles at the 10 mm scale. Credit: Idaho National Laboratory

There are roads in Idaho that will take you on long trips to lakes and mountains. But it was a different type of road that Van Rooyen came here to travel. Nanoroads describe the networks where each layer of the TRISO particle meets the next and where the grains that make up the layers themselves align with each other. These are the roads that Van Rooyen came to travel.

Could the nanoroads be the silver precipitate's path out of the TRISO fuel particle? They do offer a path of lesser resistance, a point of potential weakness in the silicon carbide. The first step would be to see if silver could be found along these roads.

Van Rooyen's method of investigation was a Scanning Transmission Electron Microscope operated by Yaqio Wu, a Boise State University research associate professor and instrument lead of the Materials and Characterization Suite at the Center for Advanced Energy Studies. Somewhere along one of the nanoroad grain boundaries, Van Rooyen and Wu, along with materials engineer Tom Lillo, might be able to spot the silver precipitate.

"We were really like private investigators," Van Rooyen said. The silver's presence on the nanoroads—if that's where it was—would be a lynchpin clue in the mystery.

After a year of patience and administrative work, she finally got her hands on actual, irradiated samples.

Eureka moment

At a research briefing on the morning the team received the samples, they discussed the fact that they were looking for a needle in a haystack. For one, the bits of silver were so small. And not all TRISO particles emit silver. Would there even be silver in the specific sample they were looking at?

But what came that afternoon was one of the rare eureka moments—a discovery that seems to come into existence in an instant.

After years of exploring and discarding various hypotheses about the location of the silver, Van Rooyen and her team placed the irradiated TRISO particle under the electron microscope. This would be the closest, most careful look at the nanoroads in irradiated TRISO ever.

On that very afternoon, microscope operator Wu zoomed in and they found the silver precipitate. It was wedged at the intersection of two layers of TRISO coating, at the nanoroads between grains.

It was "an absolute wow moment," said Van Rooyen. "We made such a commotion that people from other labs were coming to have a look."

The journey is far from over. Next, Van Rooyen and her team will observe the silver to see how far it moves through the silicon carbide and try to determine exactly how it is able to get out. Time and hard work will tell if the nanoroads hypothesis is correct.

For Van Rooyen, the search for the is just the beginning. This new section of the problem is the next adventure. "This is where the fun starts," she said.

Explore further: Silver lining advances understanding of next-generation nuclear fuel

Related Stories

Researchers grow graphene on silver

Nov 18, 2013

(Phys.org) —Graphene, a one-atom-thick carbon layer with extraordinary conductivity and strength, holds promise for a range of applications, but to realize its potential scientists must perfect techniques to tune its properties. ...

Silver nanoparticles trap mercury

Feb 16, 2012

(PhysOrg.com) -- Anyone who thinks amalgams are limited to tooth fillings is missing something: Amalgams, which are alloys of mercury and other metals, have been used for over 2500 years in the production ...

Recommended for you

Making graphene in your kitchen

3 hours ago

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Growing app industry has developers racing to keep up

Smartphone application developers say they are challenged by the glut of apps as well as the need to update their software to keep up with evolving phone technology, making creative pricing strategies essential to finding ...