Redox cycling by DsrC protein suggests reason for interaction with dissimilatory sulfite reductase

Jan 08, 2014
Redox cycling by DsrC protein suggests reason for interaction with dissimilatory sulfite reductase
Structure of Desulfovibrio vulgaris dissimilatory sulfite reductase DsrAB (grey) with bound (cyan) and dissociated (magenta) DsrC proteins.  DsrC sulfur atoms involved in redox cycling are shown as yellow spheres.  The reduced form of DsrC is shown.  (From the crystal structure 2v4j by Oliveira et al.)

Scientists recently isolated and characterized oxidized and reduced forms of the protein DsrC, an important step toward understanding DsrC's critical role in sulfate respiration. DsrC is known to interact closely with the essential enzyme dissimilatory sulfite reductase, or DsrAB, which catalyzes the six electron reduction of sulfite to sulfide. Thus, DsrC operates within the metabolic process by which bacterially mediated sulfate reduction generates most of the biogenic sulfide—around one gigaton annually—in the global biogeochemical sulfur cycle.

Sulfate-reducing bacteria thrive in anoxic environments, such as marine and freshwater sediments, by respiring sulfate, rather than oxygen as they consume organic compounds. The product of this metabolism is hydrogen sulfide, a toxic gas with a characteristic rotten-egg smell.

The Impact

Understanding microbial sulfate respiration is important for understanding the global sulfur and carbon cycles and for quantifying carbon dioxide emissions from the biosphere. Sulfate-reducing bacteria are also the primary culprit in the development of troublesome microbial biofilms that can form on wetted ferrous metal surfaces, such as ship hulls, oil pipelines or in wastewater treatment plants. Such biofouling frequently leads to corrosion and failure of costly equipment and infrastructure. Understanding metabolism in sulfate-reducing bacteria and the role of these bacteria in biofilm communities will help researchers learn to deter biofouling and mitigate the corrosion associated with it, thereby saving governments and industry billions of dollars annually.


Scientist Inês A.C. Pereira and colleagues at the Universities of Lisbon, Portugal, and Bonn, Germany, developed a method to generate and assay the oxidized and reduced states of the of the protein DsrC from the archetypical sulfate-reducing bacterium, Desulfovibrio vulgaris. Collaborators at Pacific Northwest National Laboratory and EMSL used Fourier transform ion cyclotron resonance mass spectrometry and ion mobility spectrometry/time-of flight/mass spectrometry to characterize the two redox states of DsrC. First characterized structurally and functionally by EMSL scientists using nuclear magnetic resonance spectroscopy several years ago, DsrC is known to interact closely with the cytosolic enzyme dissimilatory sulfite reductase, or DsrAB. The authors also characterized the distribution of DsrC in cell extracts, finding that most was not bound to DsrAB and therefore free to possibly interact with other proteins. The current work supports a hypothesized mechanism through which DsrC may operate: electrons derived from growth on organic compounds are transferred to quinones in the cell membrane and from those to oxidized DsrC through its interaction with a membrane protein complex, DsrMKJOP. Next, this reduced DsrC delivers two electrons to the dissimilatory sulfite reductase enzyme, DsrAB, where they are transferred to sulfite to facilitate conversion to sulfide. After delivering these two electrons, DsrC has become oxidized and is probably bound to the product sulfide.

This DsrC persulfide could then detach from DsrAB, release sulfide for transport out of the cell by forming an intramolecular disulfide bond, and finally become reduced again by DsrMKJOP to complete the cycle. A detailed understanding of energy metabolism in D. vulgaris may enable development of methods to deter biofouling and the corrosion associated with it, and will help clarify the role and importance of sulfate-reducing bacteria in the biogeochemical sulfur and carbon cycles.

Explore further: Sulfide and iron work together to reveal a new path for radionuclide sequestration

More information: Sofia S. Venceslau, John R. Cort, Erin S. Baker, Rosalie K. Chu, Errol W. Robinson, Christiane Dahl, Lígia M. Saraiva, and Inês A.C. Pereira.  2013.  "Redox states of Desulfovibrio vulgaris DsrC, a key protein in dissimilatory sulfite reduction."  Biochemical and Biophysical Research Communications.

add to favorites email to friend print save as pdf

Related Stories

Value-added sulfur scrubbing

Oct 21, 2010

Power plants that burn fossil fuels remain the main source of electricity generation across the globe. Modern power plants have scrubbers to remove sulfur compounds from their flue gases, which has helped reduce the problem ...

Fools' gold found to regulate oxygen

Jul 23, 2012

As sulfur cycles through Earth's atmosphere, oceans and land, it undergoes chemical changes that are often coupled to changes in other such elements as carbon and oxygen. Although this affects the concentration of free oxygen, ...

Origins of sulfur in rocks tells early oxygen story

Apr 16, 2009

( -- Sedimentary rocks created more than 2.4 billion years ago sometimes have an unusual sulfur isotope composition thought to be caused by the action of ultra violet light on volcanically produced ...

Recommended for you

Researchers show fruit flies have latent bioluminescence

Apr 10, 2014

New research from Stephen C. Miller, PhD, associate professor of biochemistry and molecular pharmacology, shows that fruit flies are secretly harboring the biochemistry needed to glow in the dark—otherwise ...

User comments : 0

More news stories

Chemists achieve molecular first

( —Chemists from Trinity College Dublin have achieved a long-pursued molecular first by interlocking three molecules through a single point. Developing interlocked molecules is one of the greatest ...

Metals go from strength to strength

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

Patent talk: Google sharpens contact lens vision

( —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...