Quantum physics could make secure, single-use computer memories possible

Jan 15, 2014 by Chad Boutin
The "one-shot" memory devices that recent NIST research might make possible can be envisioned as physical keys that can only be used a single time, a useful feature for computer security applications. Credit: Talbott/NIST

(Phys.org) —Computer security systems may one day get a boost from quantum physics, as a result of recent research from the National Institute of Standards and Technology (NIST). Computer scientist Yi-Kai Liu has devised away to make a security device that has proved notoriously difficult to build—a "one-shot" memory unit, whose contents can be read only a single time.

The research, which Liu is presenting at this week's Innovations in Theoretical Computer Science conference, shows in theory how the laws of could allow for the construction of such memory devices. One-shot memories would have a wide range of possible applications such as protecting the transfer of large sums of money electronically. A one-shot memory might contain two authorization codes: one that credits the recipient's bank account and one that credits the sender's , in case the transfer is canceled. Crucially, the memory could only be read once, so only one of the codes can be retrieved, and hence, only one of the two actions can be performed—not both.

"When an adversary has physical control of a device—such as a stolen cell phone—software defenses alone aren't enough; we need to use tamper-resistant hardware to provide security," Liu says. "Moreover, to protect critical systems, we don't want to rely too much on complex defenses that might still get hacked. It's better if we can rely on fundamental laws of nature, which are unassailable."

Unfortunately, there is no fundamental solution to the problem of building tamper-resistant chips, at least not using classical physics alone. So scientists have tried involving as well, because information that is encoded into a quantum system behaves differently from a classical system.

Liu is exploring one approach, which stores data using quantum bits, or "," which use quantum properties such as magnetic spin to represent digital information. Using a technique called "conjugate coding, "two secret messages—such as separate authorization codes—can be encoded into the same string of qubits, so that a user can retrieve either one of the two messages. But as the qubits can only be read once, the user cannot retrieve both.

The risk in this approach stems from a more subtle quantum phenomenon: "entanglement," where two particles can affect each other even when separated by great distances. If an adversary is able to use entanglement, he can retrieve both messages at once, breaking the security of the scheme.

However, Liu has observed that in certain kinds of physical systems, it is very difficult to create and use entanglement, and shows in his paper that this obstacle turns out to be an advantage: Liu presents a mathematical proof that if an adversary is unable to use entanglement in his attack, that adversary will never be able to retrieve both messages from the qubits. Hence, if the right physical systems are used, the conjugate coding method is secure after all.

"It's fascinating how entanglement—and the lack thereof—is the key to making this work," Liu says. "From a practical point of view, these quantum devices would be more expensive to fabricate, but they would provide a higher level of security. Right now, this is still basic research. But there's been a lot of progress in this area, so I'm optimistic that this will lead to useful technologies in the real world."

Explore further: Quantum entanglement only dependent upon area

More information: Y-K Liu. "Building one-time memories from isolated qubits." Paper presented at the ITCS 20-14 Innovations in Theoretical Computer Science meeting, Princeton University, Jan. 11-14, 2014. More info at itcs2014.wordpress.com/program/.

Related Stories

Quantum entanglement only dependent upon area

Sep 15, 2013

Two researchers at UCL Computer Science and the University of Gdansk present a new method for determining the amount of entanglement – a quantum phenomenon connecting two remote partners, and crucial for quantum technology ...

How losing information can benefit quantum computing

Nov 24, 2013

Suggesting that quantum computers might benefit from losing some data, physicists at the National Institute of Standards and Technology (NIST) have entangled—linked the quantum properties of—two ions ...

Recommended for you

CERN: World-record current in a superconductor

19 hours ago

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

User comments : 0

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.