New form of quantum matter: Natural 3D counterpart to graphene discovered

Jan 16, 2014 by Lynn Yarris
A topological Dirac semi-metal state is realized at the critical point in the phase transition from a normal insulator to a topological insulator. The + and - signs denote the even and odd parity of the energy bands. Credit: Yulin Chen, Oxford

The discovery of what is essentially a 3D version of graphene – the 2D sheets of carbon through which electrons race at many times the speed at which they move through silicon - promises exciting new things to come for the high-tech industry, including much faster transistors and far more compact hard drives. A collaboration of researchers at the DOE's Lawrence Berkeley National Laboratory (Berkeley Lab) has discovered that sodium bismuthate can exist as a form of quantum matter called a three-dimensional topological Dirac semi-metal (3DTDS). This is the first experimental confirmation of 3D Dirac fermions in the interior or bulk of a material, a novel state that was only recently proposed by theorists.

"A 3DTDS is a natural three-dimensional counterpart to graphene with similar or even better mobility and velocity electrons," says Yulin Chen, a physicist with Berkeley Lab's Advanced Light Source (ALS) when he initiated the study that led to this discovery, and now with the University of Oxford. "Because of its 3D Dirac fermions in the bulk, a 3DTDS also features intriguing non-saturating linear magnetoresistance that can be orders of magnitude higher than the GMR materials now used in hard drives, and it opens the door to more efficient optical sensors."

Chen is the corresponding author of a paper in Science reporting the discovery. The paper is titled "Discovery of a Three-dimensional Topological Dirac Semimetal, Na3Bi." Co-authors were Zhongkai Liu, Bo Zhou, Yi Zhang, Zhijun Wang, Hongming Weng, Dharmalingam Prabhakaran, Sung-Kwan Mo, Zhi-Xun Shen, Zhong Fang, Xi Dai and Zahid Hussain.

Two of the most exciting new materials in the world of high technology today are graphene and , crystalline materials that are electrically insulating in the bulk but conducting on the surface. Both feature 2D Dirac fermions (fermions that aren't their own antiparticle), which give rise to extraordinary and highly coveted physical properties. Topological insulators also possess a unique , in which bulk electrons behave like those in an insulator while surface electrons behave like those in graphene.

Beamline 10.0.1 at Berkeley Lab's Advanced Light Source is optimized for the study of for electron structures and correlated electron systems. Credit: Roy Kaltschmidt, Berkeley Lab

"The swift development of graphene and topological insulators has raised questions as to whether there are 3D counterparts and other materials with unusual topology in their electronic structure," says Chen. "Our discovery answers both questions. In the sodium bismuthate we studied, the bulk conduction and valence bands touch only at discrete points and disperse linearly along all three momentum directions to form bulk 3D Dirac fermions. Furthermore, the topology of a 3DTSD electronic structure is also as unique as those of topological insulators."

The discovery was made at the Advanced Light Source (ALS), a DOE national user facility housed at Berkeley Lab, using beamline 10.0.1, which is optimized for electron structure studies. The collaborating research team first developed a special procedure to properly synthesize and transport the sodium bismuthate, a semi-metal compound identified as a strong 3DTDS candidate by co-authors Fang and Dai, theorists with the Chinese Academy of Sciences.

At ALS beamline 10.0.1, the collaborators determined the electronic structure of their material using Angle-Resolved Photoemission Spectroscopy (ARPES), in which x-rays striking a material surface or interface cause the photoemission of electrons at angles and kinetic energies that can be measured to obtain a detailed electronic spectrum.

"ALS beamline 10.0.1 is perfect for exploring new materials, as it has a unique capability whereby the analyzer is moved rather than the sample for the ARPES measurement scans," Chen says. "This made our work much easier as the cleaved sample surface of our material sometimes has multiple facets, which makes the rotating-sample measurement schemes typically employed for ARPES measurements difficult to carry out."

Sodium bismuthate is too unstable to be used in devices without proper packaging, but it triggers the exploration for the development of other 3DTDS materials more suitable for everyday devices, a search that is already underway. Sodium bismuthate can also be used to demonstrate potential applications of 3DTDS systems, which offer some distinct advantages over graphene.

"A 3DTDS system could provide a significant improvement in efficiency in many applications over graphene because of its 3D volume," Chen says. "Also, preparing large-size atomically thin single domain graphene films is still a challenge. It could be easier to fabricate -type devices for a wider range of applications from 3DTDS systems."

In addition, Chen says, a 3DTDS system also opens the door to other novel physical properties, such as giant diamagnetism that diverges when energy approaches the 3D Dirac point, quantum magnetoresistance in the bulk, unique Landau level structures under strong magnetic fields, and oscillating quantum spin Hall effects. All of these novel properties can be a boon for future electronic technologies. Future 3DTDS systems can also serve as an ideal platform for applications in spintronics.

Explore further: New compound shows unusual conducting properties

More information: "Discovery of a Three-dimensional Topological Dirac Semimetal, Na3Bi," Science, 2014.

Related Stories

Blocking infinity in a topological insulator

Feb 08, 2013

(Phys.org)—In bulk, topological insulators (TIs) are good insulators, but on their surface they act as metals, with a twist: the spin and direction of electrons moving across the surface of a TI are locked ...

Engineers show feasibility of superfast materials

Feb 13, 2013

(Phys.org)—University of Utah engineers demonstrated it is feasible to build the first organic materials that conduct electricity on their edges, but act as an insulator inside. These materials, called ...

Recommended for you

Researchers develop world's thinnest electric generator

Oct 15, 2014

Researchers from Columbia Engineering and the Georgia Institute of Technology report today that they have made the first experimental observation of piezoelectricity and the piezotronic effect in an atomically ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

210
not rated yet Jan 16, 2014
Not only is this discovery remarkable, but the tools, THE TOOLS, are spectacular!
War, hate, and pestilence, famine, conflict and more hate on the left and stuff like this on the extreme right and the spectrum of human experience shows balance ONLY because discovery such as this projects the advance of the human race so far into undiscovered greatness. Our pettiness and unresolved and pitiful foibles are greatly out-weighed by our small, even fragmented but rapidly accelerating pace of discovery.
It is as if Nature, Fate, or call it the Cosmos if you want, refuses to allow the human experience to fail itself despite our best efforts TO fail and be nothing but an assemblage of brief, nameless lives.
We are advancing, not fast enough to brag about it - BUT -
Let me ask you; do you think the advent of the Web allowed this apparent accelerated rate of discovery as we even see it portrayed here on this site and sites like it? ('Sites'...indeed, sites, well, there it is...?!)

word-
Whydening Gyre
3 / 5 (2) Jan 16, 2014
210,
The web was an emergent property of the entropic nature of knowledge. Knowledge being like an algorithm that feeds it's results back into itself.

Sorry, that was multiple words...
Osteta
Jan 17, 2014
This comment has been removed by a moderator.