Quality control of mitochondria as a defense against disease

Jan 20, 2014

Scientists from the Montreal Neurological Institute and Hospital in Canada have discovered that two genes linked to hereditary Parkinson's disease are involved in the early-stage quality control of mitochondria. The protective mechanism, which is reported in The EMBO Journal, removes damaged proteins that arise from oxidative stress from mitochondria.

"PINK1 and parkin, are implicated in selectively targeting dysfunctional components of to the lysosome under conditions of excessive oxidative damage within the organelle," said Edward Fon, Professor at the McGill Parkinson Program at the Montreal Neurological Institute and Hospital. "Our study reveals a mechanism where vesicles bud off from mitochondria and proceed to the lysosome for degradation. This method is distinct from the degradation pathway for damaged whole mitochondria which has been known for some time. It is also an early response, proceeding on a timescale of hours instead of days."

The deterioration of mechanisms designed to maintain the integrity and function of mitochondria throughout the lifetime of a cell has been suggested to underlie the progression of several neurodegenerative diseases, including Parkinson's disease. When mitochondria, the "power plants" of the cell that provide energy, malfunction they can contribute to Parkinson's disease. If they are to survive and function mitochondria need to degrade oxidized and damaged proteins.

In the study, immunofluorescence and confocal microscopy were used to observe how the vesicles "pinch off" from mitochondria with their damaged cargo. "Our conclusion is that the loss of this PINK1 and parkin-dependent trafficking system impairs the ability of mitochondria to selectively degrade oxidized and damaged proteins and leads, over time, to the mitochondrial dysfunction noted in hereditary Parkinson's disease," said Heidi McBride, Professor in the Neuromuscular Group in the Department of Neurology and Neurosurgery at the Montreal Neurological Institute and Hospital.

Both salvage pathways are operational in the cell. If the vesicular pathway, the first line of defense, is overwhelmed and the damage is irreversible then the entire organelle is targeted for degradation.

Explore further: New antibody insecticide targets malaria mosquito

More information: "Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control." Gianā€Luca McLelland, Vincent Soubannier, Carol X Chen, Heidi M McBride, Edward A Fon. EMBO Journal (2014). DOI: 10.1002/embj.201385902 |Published 20.01.2014

Related Stories

Unleashing the watchdog protein

May 09, 2013

McGill University researchers have unlocked a new door to developing drugs to slow the progression of Parkinson's disease. Collaborating teams led by Dr. Edward A. Fon at the Montreal Neurological Institute and Hospital -The ...

Why do neurons die in Parkinson's disease?

Nov 10, 2011

Current thinking about Parkinson's disease is that it's a disorder of mitochondria, the energy-producing organelles inside cells, causing neurons in the brain's substantia nigra to die or become impaired. A study from Children's ...

New insight into Parkinson's disease

Apr 19, 2010

New research provides crucial insight into the pathogenic mechanisms of Parkinson's disease (PD), a prevalent neurodegenerative disorder. The study appears in the April 19 issue of the Journal of Cell Biology.

Recommended for you

Bacteria cooperate to repair damaged siblings

18 hours ago

A University of Wyoming faculty member led a research team that discovered a certain type of soil bacteria can use their social behavior of outer membrane exchange (OME) to repair damaged cells and improve ...

New antibody insecticide targets malaria mosquito

May 20, 2015

Malaria is a cruel and disabling disease that targets victims of all ages. Even now, it is estimated to kill one child every minute. Recent progress in halting the spread of the disease has hinged on the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.