One protein, two important roles

Jan 29, 2014
One protein, two important roles
The effect of E2F-1 methylation patterns on cancer cell growth: symmetric methylation of E2F-1 promotes growth of cancer cells (top right), while asymmetric methylation of E2F-1 promotes apoptosis and death of cancer cells (bottom right). Credit: A*STAR Genome Institute of Singapore

The molecular pathways involved in the cell cycle are complex and difficult to control. Better understanding of cell control mechanisms, and why they go wrong in cancer, could help open the door to more effective cancer drug therapies.

Now, Shunsheng Zheng from the A*STAR Genome Institute of Singapore, together with an international research team, has revealed the details of one intricate control mechanism. Their study focused on a protein called E2F-1, which is critical in the for its role in regulating the expression of many genes involved in cell growth and replication.

"Inhibition of E2F-1 and its close cousins, E2F-2 and E2F-3, completely prevents cells from growing, so we are reasonably certain that E2F activity plays a key role in promoting cell growth," explains Zheng. "But a series of studies have shown that hyper-activation of E2F-1 can trigger a form of cellular suicide known as apoptosis."

As E2F-1 has been shown to both enhance and reduce cell growth under different conditions, Zheng and his colleagues set out to determine the molecular mechanisms that underlie these opposing roles.

As with most proteins, molecular tags are added to specific sites on E2F-1 in a process called methylation. The researchers discovered that, in a particular region of E2F-1, methylation can occur in one of two ways: symmetric (SDMA) or asymmetric (ADMA). They showed that these two states are the key to understanding the opposing roles of E2F-1.

"We removed SDMA from E2F-1, which resulted in an increase in apoptosis and a decrease in cell growth," says Zheng. "When we removed ADMA from E2F-1, the effect was opposite; we observed an increase in and replication."

Furthermore, the team found that DNA damage in cells usually enhances the type of E2F-1 methylation that promotes apoptosis and thereby protects against . But in cancerous cells this mechanism does not work, meaning that the team's findings could help to improve existing cancer therapies.

"Some of the most common anti-cancer drugs, such as doxorubicin, work by re-activating the DNA damage response machinery," explains Zheng. "Doxorubicin is able to remove SDMA from E2F-1 and trigger apoptosis in , but in a molecular sense it works like a shotgun. The pellets fly everywhere, resulting in adverse effects such as heart problems, nausea, vomiting and hair loss. So, by carefully mapping out the way in which our cancer target molecules work, we hope to create an anti-cancer drug that works more delicately."

Explore further: 'Jekyll-and-Hyde' protein offers a new route to cancer drugs

More information: Zheng, S., Moehlenbrink, J., Lu, Y-C., Zalmas, L-P., Sagum, C.A. et al. Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1. Molecular Cell 52, 37–51. (2013). dx.doi.org/10.1016/j.molcel.2013.08.039

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Fighting bacteria—with viruses

19 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

20 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0