Physicists discover way to engineer new properties on ultra-thin nanomaterials

Jan 21, 2014

(Phys.org) —Physicists at the University of Arkansas and their collaborators have engineered novel magnetic and electronic phases in the ultra-thin films of in a specific electronic magnetic material, opening the door for researchers to design new classes of material for the next generation of electronic and other devices.

"Pressure is an absolutely fantastic tool to change the properties of any compound," said Jak Chakhalian, professor of physics at the U of A. "But how do you apply pressure to something that is nanoscale? We've finally found a way to systematically exert 'pressure' on this thin nanomaterial, which has only a few , to enable new electronic and magnetic phases."

An article detailing the finding, "Heterointerface engineered electronic and magnetic phases of NdNiO3 thin films," was published Nov. 6 in Nature Communications, an online journal published by the journal Nature.

Chakhalian and his former doctoral student Jian Liu found a way to apply pressure to the by varying the distances between atoms with a crystal lattice substrate. The compression forced the material into new phases, with intriguing properties not attainable in the larger crystals. Thus, the physicists developed a tool that allows them to control and engineer the novel behavior of the nanomaterial on an , Chakhalian said.

"In general, nature is remarkably scalable," he said. "If a material is a conductor of electricity, it doesn't matter what size it is; it will conduct electricity. The naïve expectation in the 1990s was that anything we shrunk down to nano size would act profoundly differently, and we did develop many remarkable tools that were capable of shrinking them down to hundreds, and recently, tens of nanometers. But it turned out we didn't go far enough. As we know now, we really need to go one magnitude lower: the atomic scale. Then these things get really strange.

"In order to find out the fundamental reason for how material properties emerge, for example why a material conducts electricity or why it is magnetic, I need to go smaller and smaller," he said.

That's why Chakhalian and his researchers are exploring the behavior of at the size several angstroms per layer, a unit equal to one-hundred millions of a centimeter.

This is the third paper produced by Chakhalian's research group that appeared in a Nature publication in 2013.

Explore further: New magnetic behavior in nanoparticles could lead to even smaller digital memories

More information: "Heterointerface engineered electronic and magnetic phases of NdNiO3 thin films." Jian Liu, Mehdi Kargarian, Mikhail Kareev,et al. Nature Communications 4, Article number: 2714 DOI: 10.1038/ncomms3714. Received 06 April 2013 Accepted 04 October 2013. Published 06 November 2013

add to favorites email to friend print save as pdf

Related Stories

Crystallizing the future of oxide materials

Jan 25, 2012

(PhysOrg.com) -- A University of Arkansas physicist and his colleagues have examined the challenges facing scientists building the next generation of materials and innovative electronic devices and identified ...

Discovery furthers understanding of superconductivity

May 28, 2013

(Phys.org) —Physicists at the University of Arkansas have collaborated with scientists in the United States and Asia to discover that a crucial ingredient of high-temperature superconductivity could be found in an entirely ...

Recommended for you

'Mind the gap' between atomically thin materials

12 hours ago

In subway stations around London, the warning to "Mind the Gap" helps commuters keep from stepping into empty space as they leave the train. When it comes to engineering single-layer atomic structures, minding ...

Paper electronics could make health care more accessible

Nov 19, 2014

Flexible electronic sensors based on paper—an inexpensive material—have the potential to some day cut the price of a wide range of medical tools, from helpful robots to diagnostic tests. Scientists have ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.