Development and construction of the OSIRIS onboard camera system

Jan 23, 2014 by Dr. Birgit Krummheuer
Red planet: In February 2007, the Rosetta space probe flew past Mars. The OSIRIS camera system succeeded in taking this image. The two polar caps made of frozen carbon dioxide can be clearly recognised. Credit: ESA 2007 / MPS for OSIRIS-Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA

The ten-year journey of the Rosetta space probe, which will end this year in August when it arrives at the Churyumov-Gerasimenko comet, was packed with interesting points of interest. In order to increase its speed, Rosetta flew past Earth three times and Mars once; the asteroids Steins and Lutetia also crossed the probe's path. And each time the OSIRIS camera system provided impressive images. The development and construction of the eye was headed by a team of scientists from the Max Planck Institute for Solar System Research.

Whereas Earth and Mars primarily offered the experts the opportunity to test and calibrate their instrument on a comparably close object, the asteroids were of major scientific interest. Since the Rosetta fly-by in July 2010, the Lutetia asteroid numbers among the best-investigated small bodies - and has proven to be a true primeval rock. Owing to its surface structure, the Max Planck researchers estimate it to be at least 3.6 billion years old.

OSIRIS' distinctive aspect: The consists of a telephoto and a wide-angle camera. The instrument can thus view the comet with a dual approach when it arrives at its destination: while the telephoto camera can resolve structures measuring a mere two centimetres on the surface of Churyumov-Gerasimenko from a distance of one kilometre, the wide-angle camera keeps the whole celestial object in view.

The cameras are additionally equipped with a total of 25 colour filters. This allows them to investigate the light which Churyumov-Gerasimenko reflects into space in specific wavelength ranges and tease out information on the mineral composition of the surface or the gas streaming from the comet.

Abstract continent: The second time it passed by Earth in November 2007, Rosetta took this picture of Europe - shown here in false colours. Credit: ESA 2007 / MPS for OSIRIS-Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA

However, as recent years have shown, OSIRIS is not only suitable for research objects in the immediate vicinity. In 2005, for example, when NASA's Deep Impact probe caused an object with a volume of one cubic metre to impact on the comet Tempel 1, OSIRIS observed the cloud of dust created by this impact from a distance of around 80 million kilometres. And the instrument succeeded in taking a first picture of the targeted comet as early as summer 2011 - something which required 13 hours exposure time and sophisticated image processing, since the probe and were around 163 million kilometres apart at the time.

Small planet: Thanks to Rosetta’s rendezvous with the Lutetia asteroid in July 2010, this celestial body is accurately charted today. Credit: ESA 2010 / MPS for OSIRIS-Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA

Since then, the has been taking a rest - as have the other parts of the probe - in energy-saving hibernation. Rosetta's eyes will first open again in the coming months - and direct their view towards another uncharted world.

Explore further: Image: Rosetta's comet

add to favorites email to friend print save as pdf

Related Stories

Image: Rosetta's comet

Jan 21, 2014

(Phys.org) —ESA's Rosetta spacecraft woke up 20 January, after 31 months in deep space hibernation, to catch up with comet 67P/Churyumov–Gerasimenko.

Asteroid Steins in 3-D

Sep 02, 2013

(Phys.org) —Five years ago this week, ESA's Rosetta mission flew by asteroid Steins en route to comet Churyumov–Gerasimenko, where it will finally arrive next year after a decade in space.

Rosetta's final sprint to the comet

Jan 21, 2014

(Phys.org) —After a ten-year journey and a long, deep sleep the Rosetta space probe was woken up on 20 January. The vehicle now starts the last leg of its journey which will lead it to the 67P/Churyumov-Gerasimenko ...

Fascinating images from a new world

Jul 14, 2010

The ESA space probe Rosetta flew past the Lutetia planetoid at around 6 p.m. CEST on Saturday. The OSIRIS camera system, built and developed under the direction of the Max Planck Institute for Solar System ...

Recommended for you

SDO captures images of two mid-level flares

Dec 19, 2014

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

Dec 19, 2014

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.