Researchers create on-chip interference between pairs of photon sources

Jan 15, 2014 by Bob Yirka report
Schematic of device operation. Credit: Nature Photonics (2013) doi:10.1038/nphoton.2013.339

( —A team made up of researchers from several countries has succeeded in creating a chip that allows for observation of the interference between silicon photon-pair sources. In their paper published in Nature Photonics, the team describes the nature of their chip, how it works and ways it might be used.

In the quest to create a truly useful quantum computer, researchers focus on single areas of research that in the end can hopefully be taken together to reach the ultimate goal. In this new effort, the researchers sought a way to allow for observation of quantum interference on a single , and report that they have succeeded by creating what some have described as the most complex quantum circuit ever made.

To allow for observing quantum interference, scientists have discovered, two virtually identical photons are needed, which means they need to be produced from two identical photon sources—no easy feat, but not impossible as the researchers have proven.

The researchers built a chip that is able to accept a pumped directly into it—that beam is used as the basis for forming photon pairs by means of interaction with a piece of silicon. The quantum light produced was then combined using a (which was also integrated into the chip). The path length of the photon beams was controlled by modifying the temperature of the waveguides which allowed for observing two-photon quantum interference. The team reports observations of "up to 100 ± 0.4% visibility on-chip up and up to 95 ± 4% off-chip."

The team suggests their apparatus (basically, a quantum system on a chip) makes unnecessary the need for external creating a path towards a true quantum computer. They also note that what they've created has been achieved without resorting to reinventing fabrication methods—their system can use methods very similar, they say, to those for other CMOS devices, making bulk production relatively easy. They also suggest their device could very well pave the way to multiple photon pair sources which if developed to work together could allow for the construction of highly efficient devices.

The team next plans to scale up their chip to allow for adding quantum processing tasks.

Explore further: On-chip quantum buffer realized

More information: On-chip quantum interference between silicon photon-pair sources, Nature Photonics (2013) DOI: 10.1038/nphoton.2013.339

Large-scale integrated quantum photonic technologies will require on-chip integration of identical photon sources with reconfigurable waveguide circuits. Relatively complex quantum circuits have been demonstrated already, but few studies acknowledge the pressing need to integrate photon sources and waveguide circuits together on-chip8, 9. A key step towards such large-scale quantum technologies is the integration of just two individual photon sources within a waveguide circuit, and the demonstration of high-visibility quantum interference between them. Here, we report a silicon-on-insulator device that combines two four-wave mixing sources in an interferometer with a reconfigurable phase shifter. We configured the device to create and manipulate two-colour (non-degenerate) or same-colour (degenerate) path-entangled or path-unentangled photon pairs. We observed up to 100.0 ± 0.4% visibility quantum interference on-chip, and up to 95 ± 4% off-chip. Our device removes the need for external photon sources, provides a path to increasing the complexity of quantum photonic circuits and is a first step towards fully integrated quantum technologies.

Related Stories

On-chip quantum buffer realized

Nov 13, 2013

Nippon Telegraph and Telephone Corp. has realized a quantum buffer integrated on an optical waveguide. The buffer is based on the "slow light effect", where the propagation speed of a pulsed light in a special ...

Recommended for you

Breakthrough in light sources for new quantum technology

2 hours ago

One of the most promising technologies for future quantum circuits are photonic circuits, i.e. circuits based on light (photons) instead of electrons (electronic circuits). First, it is necessary to create ...

A new, tunable device for spintronics

13 hours ago

Recently, the research group of Professor Jairo Sinova from the Institute of Physics at Johannes Gutenberg University Mainz in collaboration with researchers from the UK, Prague, and Japan, has for the first time realised ...

Watching the structure of glass under pressure

14 hours ago

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

17 hours ago

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

18 hours ago

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 0