Negative feedback makes cells 'sensitive'

Jan 08, 2014

New research has shown that negative feedback loops in cell signalling systems can be essential for a cell's ability to perceive the strength of a growth stimulus. Cells lacking the feedback loop became insensitive to the level of the stimulus in a manner similar to a cancerous cell displaying unrestrained growth.

Living cells need to sense changes in their environment reliably in order to make appropriate decisions. The biomolecular machinery they use to perform these tasks is surprisingly noisy. Combining automated cell imaging and mathematical analysis, the team from the University of Bristol explored what happens when the signalling system in the cell has a background level of activation even when no stimulus is present, similar to a light bulb that glows even when its switch is off.

The collaborative study, carried out by the groups of Dr Clive Bowsher in the School of Mathematics and Professor Craig McArdle in the School of Clinical Sciences, is published online this week in PNAS.

Using information theory and statistics to analyse the data from images of hundreds of thousands of , the team showed that lacking the could not detect the level of growth factor.

"Breaking the resulted in a dramatic and surprising reduction in the information the cell has about its environment," said Dr Margaritis Voliotis in the School of Mathematics and MRC Fellow on the team.

Dr Bowsher, who led the study, explained: "We realised that basal activity can be high enough in kinase signalling to create a dichotomy: the networks with negative feedback continue to function as effective sensors while the mutant networks do not."

Basal activity of signalling pathways is often raised in disease, and the interplay between basal activity and is known to be important in cancers like melanoma. The research is expected to improve understanding at the molecular level of how decisions are made by healthy cells and of how signalling goes wrong in diseased .

Explore further: How prostate cancer cells evolve

More information: Information transfer by leaky, heterogeneous, protein kinase signaling systems, by Margaritis Voliotis, Rebecca M. Perrett, Chris McWilliams, Craig A. McArdle, and Clive G. Bowsher, PNAS, published online 6 January 2014.

add to favorites email to friend print save as pdf

Related Stories

Feedback loop maintains basal cell population

Nov 01, 2012

Notch – the protein that can help determine cell fate – maintains a stable population of basal cells in the prostate through a positive feedback loop system with another key protein – TGF beta (transforming growth factor ...

How prostate cancer cells evolve

Dec 04, 2013

(Medical Xpress)—UCLA researchers have discovered how prostate cancer stem cells evolve as the disease progresses, a finding that could help point the way to more highly targeted therapies. 

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0