Negative feedback makes cells 'sensitive'

Jan 08, 2014

New research has shown that negative feedback loops in cell signalling systems can be essential for a cell's ability to perceive the strength of a growth stimulus. Cells lacking the feedback loop became insensitive to the level of the stimulus in a manner similar to a cancerous cell displaying unrestrained growth.

Living cells need to sense changes in their environment reliably in order to make appropriate decisions. The biomolecular machinery they use to perform these tasks is surprisingly noisy. Combining automated cell imaging and mathematical analysis, the team from the University of Bristol explored what happens when the signalling system in the cell has a background level of activation even when no stimulus is present, similar to a light bulb that glows even when its switch is off.

The collaborative study, carried out by the groups of Dr Clive Bowsher in the School of Mathematics and Professor Craig McArdle in the School of Clinical Sciences, is published online this week in PNAS.

Using information theory and statistics to analyse the data from images of hundreds of thousands of , the team showed that lacking the could not detect the level of growth factor.

"Breaking the resulted in a dramatic and surprising reduction in the information the cell has about its environment," said Dr Margaritis Voliotis in the School of Mathematics and MRC Fellow on the team.

Dr Bowsher, who led the study, explained: "We realised that basal activity can be high enough in kinase signalling to create a dichotomy: the networks with negative feedback continue to function as effective sensors while the mutant networks do not."

Basal activity of signalling pathways is often raised in disease, and the interplay between basal activity and is known to be important in cancers like melanoma. The research is expected to improve understanding at the molecular level of how decisions are made by healthy cells and of how signalling goes wrong in diseased .

Explore further: Sculpting a cell's backside: New protein found to help cells move from behind

More information: Information transfer by leaky, heterogeneous, protein kinase signaling systems, by Margaritis Voliotis, Rebecca M. Perrett, Chris McWilliams, Craig A. McArdle, and Clive G. Bowsher, PNAS, published online 6 January 2014.

Related Stories

Feedback loop maintains basal cell population

Nov 01, 2012

Notch – the protein that can help determine cell fate – maintains a stable population of basal cells in the prostate through a positive feedback loop system with another key protein – TGF beta (transforming growth factor ...

How prostate cancer cells evolve

Dec 04, 2013

(Medical Xpress)—UCLA researchers have discovered how prostate cancer stem cells evolve as the disease progresses, a finding that could help point the way to more highly targeted therapies. 

Recommended for you

C. difficile needs iron, but too much is hazardous

16 hours ago

Those bacteria that require iron walk a tightrope. Iron is essential for their growth, but too much iron can damage DNA and enzymes through oxidation. Therefore, bacteria have machinery to maintain their ...

Researchers discover strong break on cell division

16 hours ago

The protein complex SWI/SNF that loosens tightly wrapped up DNA is also a strong inhibitor of cell division, at the time that cells take on specialized functions. Professor Sander van den Heuvel and PhD researcher ...

A checkpoint enzyme for flawless cell division

16 hours ago

The error-free distribution of genetic material during cell division is important for preventing the development of tumor cells. Prof. Erich Nigg's research group at the Biozentrum, University of Basel, has ...

Together bacteria invade antibiotic landscapes

16 hours ago

Antibiotics kill bacteria – or at least they are supposed to, although unfortunately this does not always result in a cure. Scientists at TU Delft's Kavli Institute of Nanoscience have discovered that bacteria ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.