Overcoming multidrug resistance in cancer cells by silencing genes with RNA

Jan 22, 2014
Overcoming multidrug resistance in cancer cells by silencing genes with RNA

(Phys.org) —Resistance of tumor cells toward multiple cytostatic drugs is a serious problem in cancer treatment. In the journal Angewandte Chemie, a team of Chinese and American researchers has now introduced a new approach to gene therapy that could counter this problem: The gene that codes for resistance is "silenced" through the use of an ingenious nanocomplex.

Every cell in our body contains our complete genetic information. However, not all are used in every cell at all times. Regulatory processes are needed to determine when a gene should be read and transcribed to messenger-RNA (mRNA), and the corresponding protein built. One such mechanism is RNA silencing. In this mechanism, short, specific, silencing RNA (siRNA) fragments bind to the mRNA to be silenced with participation from several enzyme complexes. The enzymes cleave the mRNA, preventing its translation into a protein. Gene therapies based on synthetic siRNA are under clinical development.

However, these siRNA drugs are directed toward the cellular silencing "machinery" and may disrupt natural gene regulation pathways, which results in side effects. In addition, they require a transport system to carry them through the and to protect them from rapid degradation. Led by Min Yang at the Jiangsu Institute of Nuclear Medicine (Wuxi, China) and Xiaoyuan Chen at the National Institutes of Health (Bethesda, USA), the researchers have now developed an alternative approach that doesn't have these disadvantages. It is based on a nanocomplex that already includes the required machinery and packaging.

The researchers chose to use gold nanoparticles as their support and transport system. They attached three components to the nanoparticles' surfaces: 1) RNAse A, a robust enzyme that nonspecifically cleaves single-stranded RNA; 2) DNA oligonucleotides with a sequence selected to specifically bind the mRNA to be taken out of circulation; 3) A ligand that is designed to pilot the nanocomplex to the target cells – tumor cells in this case. The scientists chose Cys-tag EGF, a ligand that binds to a growth-hormone receptor present in significantly elevated quantities in the cell membranes of many tumors.

One important mechanism of in tumor cells is the active expulsion of drugs by means of a special transport protein (Pgp). Administration of triggers formation of a large number of these transporters, which effectively protect the from the drugs.

In order to silence the gene that codes Pgp, the researchers incorporated DNA that recognizes the corresponding mRNA into the nanocomplexes. They were thus able to observe cleavage of this mRNA, a reduction in the concentration of Pgp, and renewed sensitivity toward the chemotherapy drug doxorubicin in multidrug-resistant tumor cell lines. In addition to combating multidrug resistance, the new method should prove to be a generally useful approach for .

Explore further: Speeding up gene discovery

More information: Xiaoyuan Chen. "Biomimetic RNA-Silencing Nanocomplexes: Overcoming Multidrug Resistance in Cancer Cells." Angewandte Chemie International Edition, Permalink to the article: dx.doi.org/10.1002/anie.201309985

Related Stories

Four-in-One: Targeted Gene Suppression in Cancer Cells

May 06, 2009

(PhysOrg.com) -- Diagnosis and treatment in one go: Korean researchers led by Tae Gwan Park and Jinwoo Cheon have developed the basis for a four-in-one agent that can detect, target, and disable tumor cells while also making ...

Speeding up gene discovery

Dec 12, 2013

Since the completion of the Human Genome Project, which identified nearly 20,000 protein-coding genes, scientists have been trying to decipher the roles of those genes. A new approach developed at MIT, the Broad Institute, ...

A protein complex for the long haul

Nov 18, 2013

A multiprotein complex called TREX plays a key role in expression of the genetic information. Moreover, as a new study demonstrates – the longer the gene, the greater the need for TREX function.

Enhancing RNA interference

Jun 24, 2013

Nanoparticles that deliver short strands of RNA offer a way to treat cancer and other diseases by shutting off malfunctioning genes. Although this approach has shown some promise, scientists are still not ...

Iron key to brain tumor drug delivery

Jun 02, 2011

Brain cancer therapy may be more effective if the expression of an iron-storing protein is decreased to enhance the action of therapeutic drugs on brain cancer cells, according to Penn State College of Medicine researchers.

Recommended for you

Conjecture on the lateral growth of Type I collagen fibrils

Sep 12, 2014

Whatever the origin and condition of extraction of type I collagen fibrils, in vitro as well as in vivo, the radii of their circular circular cross sections stay distributed in a range going from 50 to 100 nm for the most ...

Chemists create 'assembly-line' for organic molecules

Sep 11, 2014

(Phys.org) —Scientists at the University of Bristol have developed a process where reagents are added to a growing carbon chain with extraordinary high fidelity and precise orientation, thereby controlling ...

User comments : 0