Molecular dynamics simulations reveal mechanisms by which metal nanowires deform or break under strain

Jan 29, 2014
Molecular dynamics simulations reveal the mechanisms by which metal nanowires deform or break under strain
A simulation of nanocrystalline nickel under strain shows voids (red) appearing as the grains slide around. Credit: Elsevier

Experimentalists searching for strong structural materials have established that nanocrystalline metals, which have average grain sizes smaller than 100 nanometers, are stronger, harder and more resistant to fatigue than coarser-grained metals. Despite this strength, nanocrystalline metals undergo problematic deformations in response to loading or heating. To date, researchers have struggled to verify the complex interplay of processes that lead to these deformations.

Now, Zhaoxuan Wu and co-workers at the A*STAR Institute of High Performance Computing in Singapore and the University of Pennsylvania, United States, have used large-scale to demonstrate the main deformation mechanisms in nanocrystalline nickel nanowires. Until now, these mechanisms have been impossible to observe in the lab.

"Our study was inspired by the convergence of sample size in experiments and simulations," explains Wu. "Experimentalists are now working on materials at scales of tens of nanometers. At the same time, increases in computer speed allow us to simulate such materials at similar scales. This gives us an opportunity to study the deformation of nanocrystalline metals in full detail, with minimal assumptions."

Within their simulations, the researchers prepared a virtual sample of bulk nanocrystalline nickel with an average grain size of 12 nanometers, and 'cut out' nanowires with diameters of 8 to 57 nanometers. The researchers were then able to stretch and release the virtual nanowires at a constant temperature while tracking the positions of individual atoms. This provided some detail—at an unprecedented atomic scale—about the changes in the crystal configurations as the stretched nanowires underwent plastic deformation and eventually snapped.

In particular, the simulations of a stretched nanowire showed that the strains between neighboring atoms were large at crystal , but negligible within the grains or at the free surfaces. These strains led to sliding of grain boundaries, which quickly caused the total failure of thin nanowires with diameters similar to the grain size.

In thicker wires, where many of the grains were constrained by other surrounding grains, there was less boundary sliding at low strains. However, at higher strains the grain boundaries became aligned and voids appeared between the crystal grains, eventually leading to failure (see image).

"We think that the deformation anatomy that we observed could be representative of a broad set of ," says Wu. "We plan to simulate more nanocrystalline metals and alloys, including samples with impurities, which will be closer to laboratory conditions than our current study of pure nanocrystalline nickel."

Explore further: Miniaturized ultra-small platinum cylinders weaken when their constituents reduced in number

More information: Wu, Z. X., Zhang, Y. W., Jhon, M. H. & Srolovitz, D. J. Anatomy of nanomaterial deformation: Grain boundary sliding, plasticity and cavitation in nanocrystalline Ni. Acta Materialia 61, 5807–5820 (2013). dx.doi.org/10.1016/j.actamat.2013.06.026

Related Stories

Nanocrystals not small enough to avoid defects

Dec 14, 2012

(Phys.org)—Nanocrystals as protective coatings for advanced gas turbine and jet engines are receiving a lot of attention for their many advantageous mechanical properties, including their resistance to ...

Researchers solve the mystery of nanowire breakage

Sep 12, 2012

Most materials will break when a force is applied to an imperfection in their structure—such as a notch or dislocation. The behavior of these imperfections, and the resulting breakage, differ markedly between ...

It's the fineness of the grind

Jul 23, 2013

The properties of nanomaterials could be easier to predict in future. Scientists from the Max Planck Institute for Intelligent Systems in Stuttgart have ground metal into continuously finer powders in steps ...

Recommended for you

Tough foam from tiny sheets

2 hours ago

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

Jul 28, 2014

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

Jul 28, 2014

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0