Microtechnology: Double-layer capping solves two problems

Jan 15, 2014
Microtechnology: Double-layer capping solves two problems
An optical image of a 400-by-400-micrometer, thin-film MEMS encapsulation developed using the new double-layer capping technique. The smaller square caps sit on top of holes, allowing access to the cavity below while protecting the devices within. Credit: Ref. 1 © 2013 IOP Publishing

Continual downsizing of technology means that researchers have to develop ever more ingenious methods of packaging and protecting their tiny devices. Jae-Wung Lee and co-workers at the A*STAR Institute of Microelectronics, Singapore, are at the forefront of efforts to develop safe but functional encasements for microelectromechanical systems (MEMS), such as sensors, switches or radio filters.

"MEMS devices need certain ambient conditions to operate properly and have fragile hanging structures that must be protected," says Lee. "We developed a new thin-film encapsulation (TFE) technique to meet these two requirements."

During TFE, a MEMS device is embedded in a '' of one material before adding a 'cap layer' of another type of material. By leaving some access channels in the cap layer, researchers can pipe in a chemical that reacts with and removes the sacrificial layer, leaving the MEMS device in a cavity protected by the cap layer.

Compared with other encasement methods, TFE can be performed cheaply using the same techniques that are used to build MEMS devices, and it produces less bulky packaging. However, previous attempts at TFE have suffered from two problems: depending on the design of the access holes in the cap layer, removing the sacrificial layer can be time consuming, and mass loading can damage moving components, such as resonators, in MEMS devices.

"Solving both these issues simultaneously is difficult because one can become severe when the other is solved," says Lee. "We proposed fabricating the cap layer on two levels."

The team's design involves making a grid of square holes in the lower cap layer. A secondary square layer with four legs is deposited on top of each hole, leaving sideways access gaps underneath, rather like a chimney cap. These caps allow access for removing the sacrificial layer while protecting the device beneath from mass loading (see image).

The researchers tested their idea using silicon oxide as the sacrificial layer and aluminum nitride for the cap layers. They were able to remove the using an acid vapor in just 20 minutes, compared to 8 hours for previous designs. The result was a strong, free-standing cap with a 3-micrometer-thick cavity underneath.

Lee and co-workers state that their TFE cavity design could be built using other materials and may find application beyond MEMS, for instance in microbiology. "Electrodes embedded in a TFE cavity could be used to apply electrostatic forces to biomolecules or even act as a microheater," says Lee.

Explore further: New chip provides better bioimaging performance

More information: Lee, J.-W., Sharma, J., Singh, N. and Kwong, D.-L. "Development and evaluation of a two-level functional structure for the thin film encapsulation." Journal of Micromechanics and Microengineering 23, 075013 (2013). dx.doi.org/10.1088/0960-1317/23/7/075013

add to favorites email to friend print save as pdf

Related Stories

Miniaturized sensors hold up under pressure

Jan 02, 2013

Applications as diverse as oil-well drilling and robot-driven surgery are driving demand for improved micro-electromechanical system (MEMS) pressure sensors. As they are made smaller, however, simultaneously ...

Next-generation semiconductors synthesis

Nov 08, 2013

Although silicon semiconductors are nearly universal in modern electronics, devices made from silicon have limitations—including that they cease to function properly at very high temperatures. One promising alternative ...

Recommended for you

Minimally invasive surgery with hydraulic assistance

34 minutes ago

Endoscopic surgery requires great manual dexterity on the part of the operating surgeon. Future endoscopic instruments equipped with a hydraulic control system will provide added support during minimally ...

Analyzing gold and steel – rapidly and precisely

2 hours ago

Optical emission spectrometers are widely used in the steel industry but the instruments currently employed are relatively large and bulky. A novel sensor makes it possible to significantly reduce their size ...

More efficient transformer materials

2 hours ago

Almost every electronic device contains a transformer. An important material used in their construction is electrical steel. Researchers have found a way to improve the performance of electrical steel and ...

Sensor network tracks down illegal bomb-making

2 hours ago

Terrorists can manufacture bombs with relative ease, few aids and easily accessible materials such as synthetic fertilizer. Not always do security forces succeed in preventing the attacks and tracking down ...

Miniature camera may reduce accidents

2 hours ago

Measuring only a few cubic millimeters, a new type of camera module might soon be integrated into future driver assistance systems to help car drivers facing critical situations. The little gadget can be ...

User comments : 0