Metal ink could ease the way toward flexible electronic books, displays

Jan 08, 2014
Metal ink could ease the way toward flexible electronic books, displays

Scientists are reporting the development of a novel metal ink made of small sheets of copper that can be used to write a functioning, flexible electric circuit on regular printer paper. Their report on the conductive ink, which could pave the way for a wide range of new bendable gadgets, such as electronic books that look and feel more like traditional paperbacks, appears in the journal ACS Applied Materials & Interfaces.

Wenjun Dong, Ge Wang and colleagues note that the tantalizing possibilities of flexible electronics, from tablets that roll up to wearable circuits woven into clothes, have attracted a lot of attention in the past decade. But much of the progress toward this coming wave of futuristic products has entailed making circuits using complicated, time-consuming and expensive processes, which would hinder their widespread use. In response, researchers have been working toward a versatile conductive . They have tried several materials such as polymers and gold and silver nanostructures. So far, these materials have fallen short in one way or another. So, Dong and Wang's group decided to try copper nanosheets, which are inexpensive and highly conductive, as a flexible circuit ink.

They made nanosheets coated with silver nanoparticles in the laboratory and incorporated this material into an ink pen, using it to draw patterns of lines, words and even flowers on regular printer paper. Then, to show that the ink could conduct electricity, the scientists studded the drawings with small LED lights that lit up when the circuit was connected to a battery. To test the ink's flexibility, they folded the papers 1,000 times, even crumpling them up, and showed that the ink maintained 80 to 90 percent of its conductivity.

Explore further: 3M teams with Cambrios to produce silver nanowire ink for touch displays

More information: "Synthesis and Self-Assembly of Large-Area Cu Nanosheets and Their Application as an Aqueous Conductive Ink on Flexible Electronics" ACS Appl. Mater. Interfaces, 2014, 6 (1), pp 622–629. DOI: 10.1021/am404708z

Abstract
Large-area Cu nanosheets are synthesized by a strategy of Cu nanocrystal self-assembly, and then aqueous conductive Cu nanosheet ink is successfully prepared for direct writing on the conductive circuits of flexible electronics. The Cu nanocrystals, as building blocks, self-assemble along the 111 direction and grow into large-area nanosheets approximately 30–100 μm in diameter and a few hundred nanometers in thickness. The laminar stackable patterns of the Cu nanosheet circuits increase the contact area of the Cu nanosheets and improve the stability of the conductor under stress, the result being that the Cu nanosheet circuits display excellent conductive performance during repeated folding and unfolding. Moreover, heterostructures of Ag nanoparticle-coated Cu nanosheets are created to improve the thermal stability of the nanosheet circuits at high temperatures.

Related Stories

Researchers create rollerball-pen ink to draw circuits

Jun 28, 2011

(PhysOrg.com) -- Two professors from the University of Illinois; one specializing in materials science, the other in electrical engineering, have combined their talents to take the idea of printing circuits ...

Recommended for you

Shiny quantum dots brighten future of solar cells

Apr 14, 2014

(Phys.org) —A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum-dot work by Los Alamos National Laboratory researchers in collaboration with scientists from University ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

dirk_bruere
not rated yet Jan 09, 2014
A bit like the conductive silver ink that has been around for decades?

More news stories

Shiny quantum dots brighten future of solar cells

(Phys.org) —A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum-dot work by Los Alamos National Laboratory researchers in collaboration with scientists from University ...

Polymer microparticles could help verify goods

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.