New mechanism for genome unpacking in stem cells

Jan 27, 2014 by Katarina Sternudd

Scientists at Karolinska Institutet and Gurdon Institute in Cambridge, United Kingdom have identified a novel mechanism that allows pluripotent stem cells to maintain their genome in an unpacked state, and thereby maintain their unique property to give raise to all types of specialized cells in the body. The findings are presented in the journal Nature.

Embryonic stem cells and induced have the capacity to give rise to all cell types present in the adult body. To maintain this immature state, genes that are turned on in specialized cells must remain inactive in , but ready to be quickly activated upon maturation into, for example, a cell in the skin or liver. The genome of a cell is packed in the nucleus, in a structure called chromatin. If the chromatin packing is tight (condensed), activatory molecules cannot access parts of the genome that control the activation of genes. Thus, for a certain gene to be activated, the chromatin structure must be unpacked (decondensation).

Pluripotent are unique in that their genome is partially unpacked (chromatin decondensation), when compared to specialized cells, to allow rapid activation of differentiation genes upon a given stimuli. In this published study, an international team, lead by Professor Tony Kouzarides, at the Gurdon Institute, University of Cambridge, identified a specific enzymatic activity, called citrullination, that contributes to decondensed chromatin state in pluripotent cells.

"The genome (DNA) is highly negatively charged and is associated in the structure with proteins called histones, which are highly positively charged. We found that in pluripotent cells, citrullination reduces the charge of some histones, weakening their association with the genome and contributing to decondensation", says Gonçalo Castelo-Branco, principal investigator at Karolinska Institutet and co-first author in the study with Maria Christophorou of the Gurdon Institute.

Gonçalo Castelo-Branco's research group at Karolinska Institutet is now investigating roles for citrullination in other , such as oligodendrocyte precursors in the brain, which participate in myelin regeneration in multiple sclerosis, MS.

Research in this study was funded by grants from Cancer Research UK, the Swedish Research Council, EMBO, European Union 7th Framework Programme (FP7) Marie Curie Actions, among others grants. Gonçalo Castelo-Branco implemented parts of the study at the Gurdon Institute, where he was previously a researcher, and at Karolinska Institutet. Among the study authors is also professor John Gurdon, laureate of the Nobel Prize in Physiology or Medicine 2012. Apart from Sweden and United Kingdom, scientists from Denmark, Brasil and USA participated in the study.

Explore further: New method increases supply of embryonic stem cells

More information: "Citrullination regulates pluripotency and histone H1 binding to chromatin." Maria A. Christophorou, Gonçalo Castelo-Branco, Richard P. Halley-Stott, et al.
Nature (2014) DOI: 10.1038/nature12942. Received 06 September 2012 Accepted 06 December 2013 Published online 26 January 2014

Related Stories

New method increases supply of embryonic stem cells

Jan 27, 2014

A new method allows for large-scale generation of human embryonic stem cells of high clinical quality. It also allows for production of such cells without destroying any human embryos. The discovery is a big step forward ...

DNA-altering enzyme is essential for blood cell development

Jun 10, 2013

The expression of specific genes is partially dictated by the way the DNA is packed into chromatin, a tightly packed combination of DNA and proteins known as histones. HDAC3 is a chromatin-modifying enzyme that regulates ...

Scientists engineer human stem cells

Dec 06, 2013

In an important scientific breakthrough in regenerative medicine, researchers at A*STAR's Genome Institute of Singapore have successfully converted human embryonic stem cells (hESCs) cultured in the laboratory to a state ...

Recommended for you

Fighting bacteria—with viruses

9 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

10 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0