Mathematical modelling disproves long-held view of bacterial cell cycle

Jan 02, 2014

A key theory of the cell cycle of asymmetric bacteria, which has prevailed for the last ten years, has been disproved by a combined approach using mathematical modelling and genetic experiments.

Modellers Prof. Martin Howard and Dr Seán Murray, from the John Innes Centre on the Norwich Research Park, together with experimental collaborators Prof. Patrick Viollier, Dr Gaël Panis and Coralie Fumeaux at the University of Geneva, had been researching how viruses could hijack the natural cell cycle of Caulobacter crescentus, a bacterium found in water.

Caulobacter divides asymmetrically – a stationary 'mother' cell divides to produce a motile daughter cell that, unlike the mother, can swim by using a rotating hair-like structure called a flagellum. Unable to reproduce as it is, the daughter cell must first develop into a new mother cell, shedding its flagellum and gaining a stalked appendage that binds it to a surface. This kind of asymmetric life cycle can be seen across nature and is the same type of mechanism used by many multi-cellular organisms like coral.

But while developing and testing simple mathematical models of the Caulobacter cell cycle to study its interaction with viruses, they realised that two of four key cell cycle genes thought to be essential for cell viability, were actually not needed at all. Moreover, these two inessential genes turned out to form a regulatory circuit that was conserved in many other asymmetric bacteria, but which was likely absent from Caulobacter's original (and simple) evolutionary ancestors.

"The prevailing view was that without all four of these core cell cycle genes, the cells would not develop properly and would die," said Prof Howard. "Through , coupled with biological experiments from our colleagues in Geneva, we have shown that prevailing view to be false, as we were able to delete two of the four genes and still obtain viable cells."

The machinery at the heart of asymmetric control is thus far simpler than previously believed. This simplicity, and the combined minimal modelling/genetics approach which revealed it, are potentially important for many other cell cycles in more complex organisms. These results have been published 31 December 2013 in PLoS Biology.

Explore further: Micro fingers for arranging single cells

Related Stories

Biologists use computers to study bacterial cell division

Jan 25, 2008

A group of computational biologists at Virginia Tech have created a mathematical model of the process that regulates cell division in a common bacterium, confirming hypotheses, providing new insights, identifying gaps in ...

Stem cell research uncovers importance of cell cycle

Dec 17, 2013

(Medical Xpress)—One of the biggest problems in stem cell research may not be a problem at all. Scientists have worried for years that stem cells grown in their labs were made up of many different kinds of cells, making ...

A major hub for cell-fate decisions

Nov 15, 2013

In a recently published study, LMU researchers show that, in a nerve-cell lineage in the nematode Caenorhabditis elegans, a single protein controls the rate of cell-cycle progression, and decides whether cells divide, differentiate ...

'Flip-flop' switch discovered behind key cellular process

Aug 31, 2012

(Phys.org)—For organisms to grow and develop, they must produce tissues with distinct functions, each one made up of similar cells. These different tissues are derived from stem cells. How stem cells divide ...

Recommended for you

Micro fingers for arranging single cells

Apr 24, 2015

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

Detailed structure of human ribosome revealed

Apr 24, 2015

A team at the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC - CNRS/Université de Strasbourg/Inserm) has evidenced, at the atomic scale, the three-dimensional structure of the complete ...

How to kill a protein

Apr 24, 2015

For decades scientists have been looking closely at how our cells make proteins. But the inverse is equally important: how cells kill them.

How RNA machinery navigates our genomic obstacle course

Apr 24, 2015

Once upon a time, scientists thought RNA polymerase—the molecule that kicks off protein synthesis by transcribing DNA into RNA—worked like a wind-up toy: Set it down at a start site in our DNA and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.