Longer service lives for European nuclear power stations

Jan 21, 2014
The hot cell testing facility at the Helmholtz-Zentrum Dresden-Rossendorf (Helmholtz Research Center in Dresden, Germany) allows analysis of irradiated material samples. Credit: Rainer Weisflog

New nuclear power stations are being built on all sides of Germany and service lifes for existing facilities extended. It is therefore important that German experts remain able to assess the safety of the nuclear power stations in neighbouring countries in the future as well, notwithstanding the German government's decision to opt out of nuclear energy. For this reason, scientists from Germany have participated in the LONGLIFE project funded by the European Union with approx. 2.7 million EUR. The partners in the project have investigated how pressure vessels of nuclear power stations age. They presented their findings at an international workshop in which 70 experts took part. The EU project was coordinated by the Helmholtz Zentrum Dresden-Rossendorf (HZDR).

European have a designed end of life of about 40 years, as a rule. Independent of the German energy turnaround ("Energiewende") and the associated decision to opt out of , the prerequisites for longer service lifes of stations (60 to 80 years) are being achieved.

With the advent of longer operation times, the aging effects on the reactor cannot be allowed to limit or reduce the safety of nuclear . The condition of the materials is therefore regularly checked. The reactor materials slowly change their mechanical properties as a result of highly energetic neutron radiation that arises from nuclear fission in the reactor during operation, and the materials lose their toughness – they become brittle. This effect is caused by the interaction of the neutrons with the lattice steel atoms and is mirrored for instance in the fracture behavior of material samples under test.

With longer operation times, the materials are exposed to higher total neutron doses. What effects does this have on the materials? Are the procedures and predictive models currently used to monitor the embrittlement also suitable for long-term operation of , or do they need to be adapted? These questions are the focus of the EU LONGLIFE project in which 16 partners from nine European countries have been participating.

The embrittlement during long-term operation has been investigated using numerous material samples in different irradiation conditions, made available by the project partners. The mechanical properties of the irradiated materials can only be tested in hot cell testing facilities like those at the HZDR. Researchers are particularly interested in the influence that the intensity of the radiation (called the neutron flux) has on the materials over a certain time interval. Materials that have been irradiated at a low neutron flux over many years exhibit different changes at the atomic level than materials exposed to a higher neutron flux over a shorter period of time. This effect and others that are significant during long-term irradiation are now being taken into account during monitoring of the materials' aging. A corresponding recommendation has been developed as part of LONGLIFE.

Explore further: Debunking myths on nuclear power

add to favorites email to friend print save as pdf

Related Stories

Debunking myths on nuclear power

Dec 31, 2013

It is the received wisdom that nuclear weapons and nuclear power are inseparable. Consequently, any country that builds a civilian nuclear power station is able to build an atomic bomb within a couple of ...

German minister says 'never again' to nuclear power

Jan 04, 2013

German Environment Minister Peter Altmaier said Friday his country would never again return to nuclear energy, hitting back at a top EU official who doubted Berlin's commitment to phase out nuclear power.

Recommended for you

Ikea buys wind farm in Illinois

Apr 15, 2014

These days, Ikea is assembling more than just furniture. About 150 miles south of Chicago in Vermilion County, Ill., the home goods giant is building a wind farm large enough to ensure that its stores will never have to buy ...

A homemade solar lamp for developing countries

Apr 14, 2014

(Phys.org) —The solar lamp developed by the start-up LEDsafari is a more effective, safer, and less expensive form of illumination than the traditional oil lamp currently used by more than one billion people ...

Power arm band for wearables harvests body heat

Apr 12, 2014

(Phys.org) —A group of Korean researchers have turned their focus on supplying a reliable, efficient power source for wearables. Professor Byung Jin Cho of the Korea Advanced Institute of Science and Technology ...

User comments : 0

More news stories

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.

Making 'bucky-balls' in spin-out's sights

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Gene removal could have implications beyond plant science

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...