Key species of algae shows effects of climate change over time

Jan 15, 2014

A study of marine life in the temperate coastal waters of the northeast Pacific Ocean shows a reversal of competitive dominance among species of algae, suggesting that increased ocean acidification caused by global climate change is altering biodiversity.

The study, published online January 15, 2014, in the journal Ecology Letters, examined competitive dynamics among crustose , a group of species living in the waters around Tatoosh Island, Washington. These species of algae grow skeletons made of , much like other shelled organisms such as mussels and oysters.

As the ocean absorbs more from the atmosphere, the water becomes more acidic. Crustose coralline algae and shellfish have difficulty producing their skeletons and shells in such an environment, and can provide an early indicator of how increasing affects .

"Coralline algae is one of the poster organisms for studying ocean acidification," said lead study author Sophie McCoy, a PhD candidate in the Department of Ecology and Evolution at the University of Chicago. "On one hand, they can grow faster because of increased carbon dioxide in the water, but on the other hand, ocean acidification makes it harder for them to deposit the skeleton. It's an important tradeoff."

Scientists have been studying Tatoosh Island, located off the northwestern tip of Washington state, for decades, compiling a rich historical record of ecological data. In this study, McCoy and Cathy Pfister, professor of ecology and evolution at the University of Chicago, repeated experiments conducted in the 1980s by University of Washington biologist Robert Paine. McCoy transplanted four species of crustose coralline algae to test sites to study how today's ocean has changed how they compete with each other.

In the previous experiments, one species, Pseudolithophyllum muricatum, was clearly dominant, "winning" almost 100 percent of the time over the other three species. In the current set of experiments, P. muricatum won less than 25 percent of the time, and no species proved dominant. McCoy called this new competitive environment "rock, paper, scissors dynamics," in which no species has a clear advantage.

McCoy said that in the past, P. muricatum owed its dominance to being able to grow a much thicker skeleton than other species. Historical data show that in the 1980s it grew twice as thick as its competitors, but now P. muricatum no longer enjoys that advantage. Measurements from another recent study by McCoy in the Journal of Phycology show that it now grows half as thick on average, or roughly equal to the other species.

This decrease in thickness and loss of competitive advantage is most likely due to lower pH levels recorded over the last 12 years in the waters around Tatoosh, a measure of ocean acidification.

"The total energy available to these organisms is the same, but now they have to use some of it dealing with this new stress," she said. "Some are more affected than others. So the ones that need to make more calcium carbonate tissue, like P. muricatum, are under more stress than the ones that don't."

McCoy said it's crucial to continue studying the effects of ocean acidification in a natural context like Tatoosh Island instead of in the laboratory.

"This study shows different dynamics than what other people have found in lab studies," she said. "Field sites like Tatoosh are unique because we have a lot of historical ecological data going back decades. I think it's really important to use that in nature to understand what's going on."

Explore further: Corals surviving the ocean's pollution

Related Stories

Corals surviving the ocean's pollution

Dec 02, 2013

Unlike other marine species, the corals are still capable of adapting under current circumstances of sea acidification, reveled by researchers at the Center of Biological Research of the Northeast (Cibnor). ...

Mexican Researcher identifies new species of marine algae

Dec 31, 2013

The species historically cited as the most abundant of coral algae that forms rodoliths at the Gulf of California in Mexico is in reality a compound of five different species. This finding was made by Jazmín ...

Recommended for you

Invasive vines swallow up New York's natural areas

15 hours ago

(Phys.org) —When Antonio DiTommaso, a Cornell weed ecologist, first spotted pale swallow-wort in 2001, he was puzzled by it. Soon he noticed many Cornell old-field edges were overrun with the weedy vines. ...

Citizen scientists match research tool when counting sharks

Apr 23, 2014

Shark data collected by citizen scientists may be as reliable as data collected using automated tools, according to results published April 23, 2014, in the open access journal PLOS ONE by Gabriel Vianna from The University of Wes ...

Researchers detail newly discovered deer migration

Apr 23, 2014

A team of researchers including University of Wyoming scientists has documented the longest migration of mule deer ever recorded, the latest development in an initiative to understand and conserve ungulate ...

How Australia got the hump with one million feral camels

Apr 23, 2014

A new study by a University of Exeter researcher has shed light on how an estimated one million-strong population of wild camels thriving in Australia's remote outback have become reviled as pests and culled ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...