Experiments show hypothesis of microtubule steering accurate

Jan 23, 2014
This is a model for maintenance of proper microtubule polarity in dendrites. Polymerizing microtubules entering junctions encounter existing static filaments. A complex consisting of end-binding protein 1 (EB1) and a kinesin molecular motor binds to the tip of the growing filament and moves along the static filament to co-align the filaments and maintain proper uniform orientation. The present work demonstrates that an EB1-kinesin complex is able to steer a growing microtubule in this manner without the requirement for any other cellular components. Credit: William Hancock, Penn State

Tiny protein motors in cells can steer microtubules in the right direction through branching nerve cell structures, according to Penn State researchers who used laboratory experiments to test a model of how these cellular information highways stay organized in living cells.

"We proposed a model of how it works in vivo, in the ," said Melissa Rolls, associate professor of biochemistry and molecular biology. "But because of the complexity of the living , we couldn't tell if the model was possible."

Rolls then collaborated with William O. Hancock, professor of biomedical engineering, who was already working on the tiny that move materials throughout the cell, to test the model in the laboratory, in vitro.

"Kinesins are little machines that use chemical energy to generate mechanical forces sufficient to carry materials through the cell," said Hancock.

Cells produce enzymes, proteins and signaling chemicals in the center of the cell, and these materials are then moved to other cell areas by kinesin motors. Dendrites in nerves cells are very long, and motors need to transport molecules relatively long distances on microtubules that are constantly forming and dissolving within the cell. Because dendrites branch, the researchers wondered how the microtubules themselves move in the right direction.

Working with Yalei Chen, graduate student in cell and developmental biology in the Huck Institutes of the Life Sciences, the researchers found that kinesin motors can not only transport molecules along the tubules, but can redirect the ends of the tubules to enter the proper branch of the dendrite. They report their findings online today (Jan. 23) in Current Biology.

This video is not supported by your browser at this time.
This is a movie of a polymerizing microtubule (originating in bottom left corner) encountering a static microtubule in middle of screen. During the encounter the polymerizing microtubule is bent by a fluorescently-labeled complex of end-binding protein 1 (EB1) and a kinesin motor. After being bent, the microtubule eventually snaps back to its original position and the EB1-kinesin complex continues to walk along the static microtubule. Time (in seconds) is shown at top right and scale bar is 1 micron. Credit: William Hancock, Penn State

In the laboratory, the researchers grew microtubules under the microscope and used protein engineering to attach a kinesin motor to EB1—a protein that binds to the growing end of microtubules.

"One of the reasons we thought the model might not work is that the molecule EB1 grabs the plus end of the very loosely," said Rolls. "We were unsure how something so dynamic could hold the forces, but it does."

The researchers found that it is a form of crowd sourcing—while one molecule is only loosely bound and releases quickly, the microtubule's plus end is surrounded by hundreds of these molecules so the EB1 can guide the motor protein where to go. The kinesin motor walks along a stationary microtubule until it enters the branch.

In the laboratory, the combination EB1 and kinesin motor moved the microtubule ends far enough for redirection into branches.

The researchers state that "EB1 kinetics and mechanics are sufficient to bend microtubules for several seconds." They also suggest that "other kinesins also demonstrate this activity, suggesting this is a general mechanism for organizing and maintaining proper microtubule polarity in cells."

Explore further: High-powered microscopic techniques give scientists detailed view of a critical component of cellular infrastructure

Related Stories

Some motor proteins cooperate better than others

Jan 09, 2014

Rice University researchers have engineered cells to characterize how sensitively altering the cooperative functions of motor proteins can regulate the transport of organelles.

Motor proteins may be vehicles for drug delivery

Mar 20, 2009

Specialized motor proteins that transport cargo within cells could be turned into nanoscale machines for drug delivery, according to bioengineers. Chemical alteration of the proteins' function could also help inhibit the ...

Recommended for you

For cells, internal stress leads to unique shapes

5 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

6 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

8 hours ago

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

User comments : 0

More news stories

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.