Hookworm genome sequenced

Jan 19, 2014

Going barefoot in parts of Africa, Asia and South America contributes to hookworm infections, which afflict an estimated 700 million of the world's poor. The parasitic worm lives in the soil and enters the body through the feet. By feeding on victims' blood, the worms cause anemia and, in children, stunted growth and learning problems.

Now, researchers at Washington University School of Medicine in St. Louis have decoded the genome of the hookworm, Necator americanus, finding clues to how it infects and survives in humans and to aid in development of new therapies to combat hookworm disease.

The research is published Jan. 19 in Nature Genetics.

"We now have a more complete picture of just how this worm invades the body, begins feeding on the blood and successfully evades the host immune defenses," said senior author Makedonka Mitreva, PhD, assistant professor of medicine and of genetics and a member of The Genome Institute at the School of Medicine. "This information will accelerate development of new diagnostic tools and vaccines against the infection."

Necator americanus causes about 85 percent of human hookworm infections, which are not usually fatal. However, in pregnant women, the worm can cause severe anemia, leading to maternal deaths and low birth weights that contribute to newborn deaths.

The deworming drug albendazole typically is given as part of mass treatment programs in areas with endemic infection, but its repeated and excessive use is leading to treatment failures and drug resistance in some regions, Mitreva said.

Hookworms are common in areas of extreme poverty that lack indoor plumbing. The worm's eggs are excreted in the feces of infected individuals, contaminating the soil. After the eggs hatch, the immature worms, called larvae, molt twice and enter the body through the feet. The worms travel through the bloodstream to the lungs, where they are coughed up and then swallowed, making their way to the small intestine. It is there that the mature and begin feeding on the blood.

As part of the new research, the scientists took a multipronged approach to understand different aspects of how the hookworm invades the body, feeds on the blood and evades the host's immune system.

Decoding the worm's genome allowed the researchers to discover suites of genes that orchestrate each of these processes and to identify specific targets that may be vulnerable to vaccines or new drug treatments.

"We also prioritized those drug targets so that scientists can quickly follow up on the ones that appear to be most promising," Mitreva said.

While causing significant illness in developing countries, hookworms are garnering attention in the United States and other industrial countries for their therapeutic potential in the treatment of autoimmune conditions, such as , multiple sclerosis, asthma and even allergies.

As part of their research, the scientists identified a group of molecules that appears to protect the worm from detection by the host immune system.

Hookworms evade notice by suppressing molecules that promote inflammation. This same approach may prove valuable in the treatment of .

"It is our hope that the new research can be used as a springboard not just to control hookworm infections but to identify anti-inflammatory molecules that have the potential to advance new therapies for autoimmune and allergic diseases," Mitreva said.

Explore further: How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass?

More information: Tang YT, Gao X, Loukas A, Mitreva M. et al. Genome of the human hookworm Necator americanus. Nature Genetics. Jan. 19, 2014. dx.doi.org/10.1038/ng.2875

Related Stories

New drug prospect offers hope against hookworm infections

Jul 03, 2012

A drug candidate that is nearing clinical trials against a Latin American parasite is showing additional promise as a cure for hookworm, one of the most widespread and insidious parasites afflicting developing nations, according ...

Parasitic worm genome uncovers potential drug targets

Aug 28, 2013

Researchers have identified five enzymes that are essential to the survival of a parasitic worm that infects livestock worldwide and is a great threat to global food security. Two of these proteins are already ...

Worm therapy for hay fever? More research is needed

Apr 18, 2012

Purposely infecting patients with hookworms or whipworms to treat hay fever and other immune-related diseases has been experimented with since the 1970s. A new review by The Cochrane Library concludes that c ...

Worms and hot baths: Novel approaches to treating autism

Dec 12, 2013

A new study shows that two unusual treatment approaches may have beneficial effects on the symptoms of autism in children and adults with the disorder. Using a hot bath to raise body temperature and thereby mimic the effects ...

Recommended for you

The origin of the language of life

18 hours ago

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

Quest to unravel mysteries of our gene network

Dec 18, 2014

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

Dec 18, 2014

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.