Halogenated natural alkaloids: A new approach to malaria treatment?

January 21, 2014
A new approach to malaria treatment?

(Phys.org) —Two of the most urgent challenges for scientists are the battles against food shortages and infectious diseases like malaria. Unfortunately, both the herbicides used to protect plants and the anti-infectives that shield us from disease rapidly lose their effectiveness as the target organisms develop resistance. In order to benefit both fields at once, scientists tested lead compounds from agrochemical research against infectious germs as well. In this way, a team of German and Swiss researchers has found a new candidate that may work against malaria, as they report in the journal Angewandte Chemie.

"Recently, enzymes from the non-mevalonate terpene have been identified as attractive target structures with novel modes of activity for the development of herbicides and drugs against ," explains François Diederich from the ETH Zurich (Switzerland). "This biosynthetic pathway is found in many human pathogens and in plants, but does not occur in mammals." Correspondingly, an inhibitor should only have a toxic effect on pathogens and plants, not humans. Diederich and his co-workers at the ETH, TU Munich, BASF-SE, the University of Hamburg, the Swiss Tropical Institute STPHI in Basel, and TU Dresden have now discovered new inhibitors and characterized the ways in which they work.

By using high-throughput screening methods, the researchers of BASF SE led by Matthias Witschel tested about 100,000 compounds for an inhibitory effect against plant IspD, an of the aforementioned non-mevalonate terpene biosynthetic pathway – and found several hits. The most interesting compounds are pseudilins, highly halogenated alkaloids from marine bacteria, and have a significant on IspD, as researchers at the TU Munich led by Michael Groll demonstrated in NMR-based tests and researchers at the University of Hamburg led by Markus Fischer showed in photometric tests. Says Groll: "Interestingly, the chemical scaffold of the pseudilins is completely different from that of a previously discovered IdpD inhibitor. This suggests that the mode of action should also be different."

To research this mechanism, Andrea Kunfermann from Groll's team synthesized cocrystals of the pseudilins and IspD enzymes and examined them by X-ray crystallography. This showed that the pseudilins bind to an allosteric pocket in the enzyme. Halogen atoms in the pseudilins build up halogen bridges to the enzyme, which are, in addition to metal ion coordination, responsible for the strong binding. Occupation of this pocket changes the shape of the enzyme so that a cosubstrate required for proper functioning of the enzyme can no longer dock at the binding site in the active center.

"The pseudilins demonstrated herbicidal activity in plant assays and were active against Plasmodium falciparum, the pathogen that causes Malaria tropica and is dependent on the non-mevalonate biosynthesis pathway for survival," reports Diederich. The researchers hope to use this as a new starting point for malaria treatment.

Explore further: Iron-sulfur enzymes as candidates for antibiotic development

More information: François Diederich. "Pseudilins: Halogenated, Allosteric Inhibitors of the Non-Mevalonate Pathway Enzyme IspD." Angewandte Chemie International Edition, dx.doi.org/10.1002/anie.201309557

Related Stories

Iron-sulfur enzymes as candidates for antibiotic development

October 9, 2012

The iron-sulfur protein IspH plays a central role in the terpene metabolism of several pathogens. The mechanism of the reaction provides an approach for developing new antibiotics, particularly against malaria and tuberculosis. ...

Missing molecule in chemical production line discovered

December 11, 2013

It takes dozens of chemical reactions for a cell to make isoprenoids, a diverse class of molecules found in every type of living organism. Cholesterol, for example, an important component of the membranes of cells, is a large ...

New strategy emerges for fighting drug-resistant malaria

January 15, 2014

Malaria is one of the most deadly infectious diseases in the world today, claiming the lives of over half a million people every year, and the recent emergence of parasites resistant to current treatments threatens to undermine ...

Recommended for you

New polymer creates safer fuels

October 1, 2015

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact. Researchers ...

Researchers print inside gels to create unique shapes

September 30, 2015

(Phys.org)—A team of researchers at the University of Florida has taken the technique of printing objects inside of a gel a step further by using a highly shear-rate sensitive gel. In their paper published in the journal ...

How a molecular motor untangles protein

October 1, 2015

A marvelous molecular motor that untangles protein in bacteria may sound interesting, yet perhaps not so important. Until you consider the hallmarks of several neurodegenerative diseases—Huntington's disease has tangled ...

Anti-aging treatment for smart windows

October 1, 2015

Electrochromic windows, so-called 'smart windows', share a well-known problem with rechargeable batteries – their limited lifespan. Researchers at Uppsala University have now worked out an entirely new way to rejuvenate ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.