The experts behind Gaia's arrival at nothingness

Jan 16, 2014
Gaia mapping the stars of the Milky Way. Credit: ESA/ATG medialab; background: ESO/S. Brunier

With a final, modest, thruster burn yesterday afternoon, ESA's billion-star surveyor finalised its entry into orbit around 'L2', a virtual point far out in space. But how do you orbit nothing? And who can show you how to get there, anyway?

Just after 15:30 GMT (16:30 CET) yesterday, Gaia made a short thruster burn, nudging the galactic survey craft onto its planned scientific . The job had been mostly completed last week, after an almost two-hour firing took Gaia into a squiggly path about the L2 Lagrange point, 1.5 million km from Earth.

But this apparently simple manoeuvre belies an astonishing fact: the L2 point consists of precisely nothing. It's simply a point in space.

Nothing there

"Lagrange points are special – it's true there's nothing there," says Markus Landgraf, a mission analyst at ESOC, ESA's operations centre in Darmstadt, Germany.

"They are points where the gravitational forces between two masses, like the Sun and Earth, add up to compensate for the centrifugal force of Earth's motion around the Sun, and they provide uniquely advantageous observation opportunities for studying the Sun or our Galaxy."

As seen from this Lagrange point (there are a total of five such points in the Sun–Earth system), the Sun, Earth and Moon will always be close together in the sky, so Gaia can use its sunshield to protect its instruments from the light and heat from these three celestial bodies simultaneously.

Gaia's Lissajous orbit. "In terms of the math, the thruster burns in January 2014 are moving Gaia onto what's known as a 'stable manifold' – a pathway in space that will lead the spacecraft to orbit around L2," says Mathias Lauer, one of the flight dynamics specialists at ESOC working on the Gaia mission. “Gaia is now moving in a so-called Lissajous orbit around L2, once every 180 days.” The name Lissajous refers to the shape of the path traced out by the orbit as seen from Earth, which will rise then fall above and below the ecliptic plane (the plane of Earth's orbit around the Sun) while sometimes leading and sometimes lagging the Earth. Credit: ESA

This also helps the satellite to stay cool and enjoy a clear view of the Universe from the other side.

L2 provides a moderate radiation environment, which helps extend the life of the instrument detectors in space.

However, orbits around L2 are fundamentally unstable.

"We'll have to conduct stationkeeping burns every month to keep Gaia around L2, otherwise perturbations would cause it to 'fall off' the point," says Gaia Operations Manager David Milligan.

For those used to seeing images of the International Space Station orbiting Earth, or Mars Express orbiting the Red Planet, it seems intuitive that spacecraft have to orbit something. How do you get a spacecraft to orbit around a point of nothingness?

ESA flight dynamics experts

To maintain this orbit for Gaia's planned 5-year mission requires extremely careful work by ESA's team – the experts who determine and predict trajectories, prepare orbit manoeuvres and determine satellite attitudes.

No ESA satellite reaches its destination without the ‘spacecraft navigators’ – the flight dynamics experts who predict and determine trajectories, prepare orbit manoeuvres and determine satellite attitudes and pointing. Credit: ESA/J. Mai

The flight dynamics experts use a range of software tools, developed and refined during decades of support to missions around Earth and across the Solar System.

To plan the orbit, the team applies mathematical models to generate an initial guess for the target orbit and how to get there. This guess must account for the requirements and constraints of the launcher and the needed telecommunications links.

Next, those initial guesses are fed into simulation software to see if the results would violate any of the constraints. Often, no solution is possible.

"That is where expertise and experience are indispensable to reconsider the assumptions and then start all over," says Frank Dreger, Head of Flight Dynamics.

"There's no commercial source for this sort of software or expertise – it's been built up over many years at ESOC and represents a capability that is rare in the world and unique in Europe."

Explore further: Europe's star-hunter Gaia enters orbit

add to favorites email to friend print save as pdf

Related Stories

Europe's star-hunter Gaia enters orbit

Jan 08, 2014

A billion-dollar star-hunting telescope slotted into its operational orbit Wednesday prior to harvesting data for the most detailed map yet of the Milky Way, the European Space Agency (ESA) said.

Gaia secured inside fairing

Dec 16, 2013

ESA's billion-star surveyor Gaia, less than a week from launch, is now tucked up inside the fairing that will protect it during the first few minutes of ascent into space.

Mission control ready for Gaia launch

Dec 18, 2013

(Phys.org) —Shortly after a powerful Soyuz launcher lofts Gaia, ESA's new star mapper, into space on Thursday, teams on the ground will establish initial radio contact. Even then, tension will run high ...

Gaia mapping the stars of the Milky Way

Jun 28, 2013

ESA's billion-star surveyor, Gaia, has completed final preparations in Europe and is ready to depart for its launch site in French Guiana, set to embark on a five-year mission to map the stars with unprecedented ...

Recommended for you

SDO captures images of two mid-level flares

21 hours ago

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

Dec 19, 2014

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

Dec 19, 2014

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

nkalanaga
not rated yet Jan 16, 2014
For those still wondering, it is orbiting "something": the combined masses of the Sun, Earth, and Moon. The orbit isn't stable due to perturbations by the other planets.
Whydening Gyre
5 / 5 (1) Jan 16, 2014
NK -
Is article's author taking literary license.
It's not even actually orbiting that. It's trying to maintain it's position within the center of the lagrange point.
nkalanaga
not rated yet Jan 17, 2014
Also true, but one can orbit a lagrange point without using fuel, although the orbit will be considerably wider, and it would look like orbiting "nothing". L4 and L5 are stable points, and even there, objects don't stay precisely centered. Jupiter's Trojan asteroids are prime examples of those.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.